
1

Data Protection Using Recursive Inverse Function
Teng Xu, Hongxiang Gu, and Miodrag Potkonjak

Computer Science Department

University of California, Los Angeles

{xuteng, hxgu, miodrag}@cs.ucla.edu

Abstract—Data security and privacy have emerged to become
an important issue in various types of applications. Although
many cryptographic cyphers are proposed to leverage the issue,
they normally suffer from the problems of either requiring large
power/bandwidth consumption or employing linear system which
is easy to break. To solve the problem of traditional cyphers,
we have proposed a new hardware security primitive: recursive
inverse function (RIF) designed on the field-programmable gate
array (FPGA). The RIF takes advantage of a pair of inverse
functions, building a recursive scheme for message encryption
and decryption. The inverse functions are defined as a pair
of functions where each function implements a mapping being
inverse to the mapping of the other function. On the top of it,
the recursive structure guarantees the input-output mapping to
be statistically extremely hard to predict. The RIF can be easily
implemented using hierarchical lookup-table (LUT) structures
with low delay and power overhead. Using our proposed RIF
structure, we have demonstrated how the RIF can be incor-
porated into a processor design to enable the data protection.
Finally, we implement our scheme on a Xilinx Spartan-6 FPGA
device to analyze the performance and the overhead.

I. INTRODUCTION

The security and privacy of data have emerged to become an
important issue in many applications. In the domain of hard-
ware data storage, there have been many possible ways for the
attackers to tamper or to steal the data, for example, through
the communication channel, the processors, or the memories.
Among all the above data attacks, the memory attacks are
among the most common type, where the assumption is that
the contents stored in the memory can be read or even modified
by the attackers.

To protect the data from memory attacks, a most intuitive
way is to use security ciphers to encrypt and to decrypt the
data. However, there has been two well-known requirements
in the design of security ciphers. The first is low power and
low bandwidth which is due to the fast growth of resource
constrained systems, such as mobile devices and wireless sen-
sor networks. All of the above systems are highly constrained
by the battery life and the available network bandwidth. The
second requirement is the confusion and diffusion of the
system which are two properties of the operation of a secure
cipher identified by Shannon [1]. For example, any linear
system can be easily attacked by using statistical models.
Traditional cryptography designs often fail to meet either of
the two requirements. Therefore, there is a need to propose
new types of security primitives which are low power, low
bandwidth, and employ high statistical security.

The objective goal of this paper is to propose a new
security primitive, the recursive inverse function, to leverage
the requirements proposed above. As the name suggested,
RIF employs two major properties, respectively “inverse” and
“recursive”. The first and the most important advantage of
RIF is to employ inverse structure for message encryption
and decryption. Compared to traditional cryptographic cyphers,
both operations under the inverse design are ultra lightweight.
More importantly, in RIF, the bandwidth in message transfer-
ring equals to the size of message itself, only a very short
random seed needs to be synchronized at the beginning of the
transferring. The second important property is the “recursive”.
RIF achieves this by designing a scheme to recursively use
historical information to encrypt the message in the current
round. Thus the relation between the plaintext and the cipher-
text becomes even more nonlinear and will depend on the
previous calculation results.

The RIF is implemented using the FPGA-based hierarchical
LUT networks. It consists a pair of inverse functions. The RIF
has two hardware pieces, respectively foriginal and finverse.
We guarantee that the mappings are the inverse to each other
by manually allocating the LUT contents level by level. Based
on the hierarchical structure, RIF recursively encrypts and
decrypts messages such that unless the attacker acknowledges
all the previous rounds of calculation results, he/she has no
chance to retrieve the message in current round.

Based on the architecture of RIF, we propose a new scheme
to protect the data stored in the memory. The core idea is that
we incorporate RIF to prevent memory attacks by using it to
secure the data transfer between the processor and the memory.
Our assumption here is that the processor can be trusted while
the memory has the risk to be tampered thus can not be trusted.
For all the data to be stored in memory, we use foriginal in RIF
to encrypt. Meanwhile, for the data fetched from the memory,
we use finverse to decrypt. The protection scheme encrypts all
the data outside the processor with low delay, area, and power
overhead. We have also implemented our scheme on a Xilinx
Spartan-6 FPGA device to analyze the performance.

II. RELATED WORK

A. Lightweight Security Primitives

There are a number of lightweight protocols for several
secret key cryptographic primitives [2][3]. Most of them focus
on proposing lightweight architecture for already exists cryp-
tographic cyphers, e.g., SHA-1, AES [4]. Physical unclonable
function (PUF) is a new type of lightweight security primitive
first proposed by Pappu et al. [5], Majzoobi et al. demonstrated



2

a new methodology for low-power PUF design which enables
multiple delay lines for response creation [6]. Xu et al.
developed the work along the line to further reduce the energy
consumption of PUF based protocols as well as to enhance
the stability of PUF systems by employing completely digital
architecture [7][8][9].

B. Data Protection

A wide spectrum of techniques are proposed to target
data protection from different viewpoints. Tamper resistant
software is defined as the one that is resilient to observa-
tion and modification. Aucksmith proposed an approach for
creating tamper resistant software through employment of
self-modifying and self-decrypting segment of code that is
installed in unique way on in platform [10]. Another popular
technology is obfuscation, which is used for the protection of
software intellectual property. While most often obfuscation is
conducted in compilation phases that translate source code into
assembly, there are several popular technique that act during
translation of assembly code into machine code [11].

III. ARCHITECTURE

We introduce the hardware architecture of RIF in this
section. The major issue we focus here is how to use hard-
ware to implement an inverse mapping, essentially to meet
the “inverse” property of RIF. An important prerequisite of
building an inverse mapping is that each single mapping of
the function must be a one-to-one mapping. Our solution to
build such a mapping is to use hierarchical LUT connections.
The key idea is to allocate the contents in the LUTs in such a
way that any arbitrary mapping can be generated.

We start with a simple example. Consider a LUT network
with k k-input LUTs, if all the LUTs take the same k inputs,
then they will generate k outputs, thus forming a k-to-k
mapping. Due to the fact that the output in the mapping is
completely decided by the way to allocate the contents of the
LUTs, thus any arbitrary k-to-k mapping can be generated as
long as the LUT contents can be configured. Coming back to
the design of a pair of inverse functions, the first constrain is
the design of one-to-one mapping, and the second constrain is
the creation of inverse mapping. Since any arbitrary mapping
can be generated, thus both constrains can be easily satisfied
by properly allocating LUT contents.

In the above example, we assume that all the k LUTs must
take all the same k inputs. This is a prerequisite to build an
arbitrary mapping. However, there still exists many flexibility
in the detail LUT connection. For example, for each individual
LUT, the order of the inputs does not have to be fixed. The only
requirement is that each LUT must take all k inputs regardless
of the order of the input pins. Instead of using x1...xk as the
inputs for all of the LUTs, we can switch the order of the
inputs to be any combination of x1...xk. Meanwhile, the LUT
locations to fill in the values need to be adjusted because the
positions have switched.

A real system of RIF can be built on the top of the proposed
structure by combining the k LUT blocks both horizontally and
vertically, thus to increase the number of inputs/outputs as well

as to enhance the security of the system. As for horizontal
connection, we can increase the number of LUTs as well
as the number of inputs. For instance, we can duplicate the
structure of k LUTs with a new set of k LUTs taking a new
set of k inputs. If we put them in parallel, the system will be
extended to a 2k input-output system composed of 2k k-input
LUTs. The generated mapping is still a one-to-one mapping
since the connecting of two one-to-one mapping sequence still
forms a one-to-one mapping. However, only using one level of
LUTs can lead the structure to be easy to break. Therefore, in
order to enhance the security of our system, we apply vertical
connection. The idea is to connect the LUTs in a series to
form a hierarchical structure. To be more specific, the structure
can be formed by connecting the outputs of previous level
LUTs as the inputs of next level LUTs which is equivalent to
connect the outputs of previous mapping as the inputs of the
next mapping. Due to the transitive of one-to-one mapping,
the vertical connection still preserves the one-to-one property.

Combining the proposals from the above discussion, the
foriginal and the finverse can be generated using two separate
pieces of LUT network, realizing two mappings of opposite
directions. Each LUT network can consist n levels of LUTs
where each level implements a one-to-one mapping using
the approach described above. To guarantee that the overall
mapping is the inverse to each other, for the ith level LUTs in
foriginal which implement a one-to-one mapping, the inverse
mapping is implemented by the (n + 1 − i)th level LUTs
in finverse. Thus each level of LUTs in foriginal have a
corresponding LUT network in finverse at the symmetric
position implementing the inverse mapping. Between levels of
LUTs, the outputs of previous level LUTs are fed as the inputs
to the next level LUTs. The overall structure is lightweight in
terms of both time and area overhead since it only consists
of a limited number of interconnected LUTs both horizontally
and vertically.

IV. RECURSIVE ENCRYPTION AND DECRYPTION

The second major property of RIF focuses on to provide
a recursive scheme to encrypt and decrypt messages using
the above hardware structure. Encryption and decryption are
among the most popular protocols applied in various scenarios.
Our motivation here is to provide a novel lightweight recursive
scheme to enhance the security of the system based on the core
idea that the current outputs of the system should depend on all
the previous outputs, thus to dramatically increase the efforts
of attacking.

Before explaining the specific flow for recursive encryption
and decryption using RIF, we want to first define notations and
assumptions for the scheme.

• S − initial random seed.
• Alice − the party to send and encrypt messages, owns

the hardware of foriginal.
• Bob − the party to receive and decrypt messages, owns

the hardware of finverse.
• M1, ...,Mn − message flow for encryption and decryp-

tion. The flow starts from M1 and ends at Mn.
• g − a secret function synchronized between Alice and

Bob before encryption and decryption.



3

Algorithm 1 Recursive Encryption and Decryption

1: Alice calculates R=foriginal(S) and sends R to Bob.
2: Bob retrieves S using S = finverse(R).
3: Alice wants to encrypt and send the ith message Mi.
4: Alice calculates Gi = g(S,M1, ...Mi−1), then calculates

and sends Oi = foriginal(Gi ⊕Mi).
5: Bob receives Oi. He calculates Gi = g(S,M1, ...Mi−1),

then retrieves Mi using Mi = finverse(Oi)⊕Gi.
6: Step 3 to 5 are repeated until the whole message flow is

transferred.

The flow of recursive encryption and decryption is shown in
Algorithm 1. The algorithm has the following properties. (1)
Low overhead for both encryption and decryption. Essentially,
only two calculations are required in each round of message
transfer process. The first is to use the inverse mapping
functions, e.g., foriginal and finverse, they are implemented
using the lightweight LUT network. The second function is
the synchronization function g. It has the flexibility to be
designed in different formats while preserving the lightweight
property, e.g., g(x1, x2, ...xn) = x1⊕x2⊕ ...xn is an possible
option which is extremely easy and light to be implemented.
(2) By recursively incorporating the previous messages in the
encryption and decryption process, the security of system is
enhanced. It is mainly due to the fact that the outputs of
encryption in the current cycle will depend on all of the
previous messages, which means that if the attacker wants
to retrieve the message Mi, he/she needs to first attack and
retrieve all the previous messages M1 to Mi−1. This recursive
encryption and decryption dramatically increase the efforts the
attacker needs to take to steal the message.

V. DATA PROTECTION USING RIF

We formally introduce our scheme for RIF enabled data
protection. We start from the most intuitive protection diagram,
then we discuss how to prevent our system from replay attacks.
Lastly we present the performance and the overhead of the
scheme by implementing it on the Xilinx Spartan-6 FPGA.

A. Protection Diagram

Our key idea is to use RIF to encrypt data before storing
them in memory and decrypt them when fetching. The diagram
of the work flow is shown in Figure 1. Every time when data
needs to be stored in memory, foriginal is used to encrypt it,
and when the data needs to be read back, finverse is applied for
decryption. In this design, we do not need to change any inner
structure of the processor since we assume that the processor
is trustable. However, the memory outside the processor can
be tampered or even modified.

B. Replay Attack

A major challenge of the scheme is how to prevent the replay
attack. Assume that the attacker can access and overwrite the
data stored in the memory, this will result the processor to read
in wrong encrypted data. Our solution to prevent this is to add a

OpenRISC

Processor

Memory

forig

inal

finve

rse

Wishbone SoC Bus

Fig. 1: The RIF-based data protection flow between OpenRISC
processor and memory.

new RIF to control the write signal of the memory. We name
the two functions in this RIF as foriginal2 and finverse2 to
distinguish. The foriginal2 is owned by the processor while
the finverse2 is owned by the memory. The replay attack
prevention is demonstrated in Algorithm 2. The essence is
to use the RIF for authentication. In order to prevent the
attacker from stealing historical authentication code through
the communication bus, the processor takes advantage of the
dynamic key. For instance, in Algorithm 2, it uses the current
time as the authentication key. Only when the decryption
results in the memory indicates the key is close enough to
the current time, the write to the memory is enabled. Note
that since the time cost of data transfer plus encryption and
decryption is short, thus t should be very close to t0.

Algorithm 2 Replay Attack Prevention

1: The processor has the foriginal2 and the memory has the
finverse2.

2: The processor has an encrypted message M to store in the
memory.

3: The processor fetches current system time t and calculates
T=foriginal2(t).

4: The processor sends M and T to memory through the
communication bus.

5: The memory calculates t=finverse2(T ).
6: The memory fetches current system time t0.
7: The memory enables the write of M only when t0 ≈ t.

C. RIF Implementation

We implement the RIF based data protection scheme on
OpenRISC reference platform system-on-chip (ORPSoC) [12].
The system is implemented on a digilent atlys development
board with Xilinx spartan-6 LX45 FPGA. The OpenRISC
core will serve as the processor in the protection scheme,
and a DRAM will serve as the memory/storage system. Our
implementation will be a demonstration of how our RIF
design can be adopted in a real world application. Our RIF
module resides right between ORPSoC and the external RAM.
Whenever a write action is performed, the 32-bit data will go



4

through the foriginal and the data will be encrypted. Whenever
the memory controller is accessing the data inside the RAM,
the data will first go through the finverse and be decrypted. In
both functions in the RIF, we use LUT ladder network with
32-bits input-output mapping. Both functions contain 4 levels
of LUTs.

D. Overhead

We first present the FPGA resource overhead of the RIF
scheme as shown in Table I. We can see that the largest
overhead is in terms of LUTs and slices, and they take around
8%− 9% overhead.

Type Original Protected overhead

D-flipflop 6705 6780 1.12%

LUTs 12560 13584 8.15%

Slices 4457 4854 8.91%

DSP48A1s 4 4 0%

TABLE I: FPGA resource usage before and after protection,
overhead is calculated comparing to original design.

We also analyze the timing overhead. Each time the system
intends to access the memory, the data passes through the
RIF. Additional module will certainly introduce latency to the
overall performance of the whole ORPSoC system. To assess
the performance impact introduced to the entire system, we run
embedded benchmark programs on our design and compare
their performance with the result from original design. Our
benchmark suite includes Dhrystone [13], CoreMark [14],
a subset of MiBench [15], and a subset of Zlib [16]. The
normalized run time for these benchmark programs are shown
in Figure 2.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FFT zlib

search_large

search_small

bitc
ount

basicmath_small

dhrystone

coremark
 

 

original

DBF incorporatedRIF

Fig. 2: Normalized runtime for both original design and RIF
incorporated design.

As we can observe from the figure, small programs such
as Dhrystone and Coremark show no change in performance
when RIF is introduced to the design. We believe that this is
caused by the relatively large instruction cache and data cache.
Both caches are 8KB large. For small programs, in fact there

exists no access to the memory, therefore our RIF is never
used and accessed. Larger programs such as MiBench basic
math shows moderate increase in runtime.

VI. ACKNOWLEDGEMENT

This work was supported in part by the NSF under
Award CNS-0958369, Award CNS-1059435, and Award CCF-
0926127, and in part by the Air Force Award FA8750-12-2-
0014.

VII. CONCLUSION

In this paper, we have proposed a recursive scheme for data
protection using a novel hardware security primitive: recursive
inverse function. The core idea is to implement a pair of
functions that forms bijective mappings. Then we recursively
incorporate historical messages in the encryption and decryp-
tion process. We have proposed the architecture of RIF using
LUTs on FPGA. On the top of the architecture and the scheme,
we have depicted the RIF based approach to enable data
protection. Our demonstrated system implementation indicates
that our protection scheme is low-overhead in terms of both
area and time.

REFERENCES

[1] Shannon, Claude E. “Communication theory of secrecy systems,” Bell

system technical journal 28.4, pp. 656-715, 1949.

[2] P. Yalla, and J.-P. Kaps, “Lightweight cryptography for FPGAs,” Re-

configurable Computing and FPGAs, 2009. ReConFig’09. International

Conference on, IEEE, 2009.

[3] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of IoT Systems: Design
Challenges and Opportunities,” ICCAD, pp. 417-423, 2014.

[4] J.-P. Kaps, and S. Berk, “Energy comparison of AES and SHA-1 for
ubiquitous computing,” Emerging directions in embedded and ubiquitous

computing, pp. 372-381, 2006.

[5] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026-2030, 2002.

[6] M. Majzoobi, F. Koushanfar, M. Potkonjak, “Lightweight secure PUFs,”
ICCAD, pp. 670-673, 2008.

[7] T. Xu, J. B. Wendt, and M. Potkonjak, “Digital Bimodal Function: An
Ultra-Low Energy Security Primitive,” ISLPED, pp. 292-297, 2013.

[8] T. Xu, and M. Potkonjak, “Robust and flexible FPGA-based digital PUF,”
FPL, pp. 1-6, 2014.

[9] T. Xu, J. B. Wendt and M. Potkonjak, “Secure Remote Sensing and
Communication using Digital PUFs,” ANCS, pp. 173-184, 2014.

[10] D. Aucsmith, “Tamper resistant software: an implementation,” In R.
Anderson, editor, Information Hiding, volume 1174 of Lecture Notes in
Computer Science, pages 317-333. Springer Berlin Heidelberg, 1996.

[11] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” In Proceedings of the 10th ACM

Conference on Computer and Communications Security, pp. 290-299,
2003.

[12] D. Lampret and J. Baxter, “OpenRISC 1200 IP core secification,” rev.
0.12, 2011.

[13] R. Weicker, “An overview of common benchmarks,” Computer, vol. 23,
no. 12, pp. 65-75, Dec. 1990.

[14] Coremark, an EEMBC benchmark, 2012.

[15] M. R. Guthaus et al, “MiBench: A free, commercially representative
embedded benchmark suite,” IISWC, pp. 3-14, Dec. 2001.

[16] P. Deutsch and J.-L. Gailly, “ZLIB Compressed Data Format Specifi-
cation version 3.3,” 1996.


