
Securing Interconnected PUF Network with

Reconfigurability

Hongxiang Gu, Miodrag Potkonjak
Department of Computer Science, University of California, Los Angeles

Los Angeles, CA, USA
Email: hxgu@cs.ucla.edu,miodrag@cs.ucla.edu

ABSTRACT
Physical Unclonable Functions (PUFs) are known for their
unclonability and light-weight design. Recent advancement
in technology has significantly compromised the security of
PUFs. Machine learning-based attacks have been proven
to be able to construct numerical models that predict var-
ious types of PUFs with high accuracy with a small set of
challenge-response pairs (CRPs). To address the problem,
we present a reconfigurable interconnected PUF network
(IPN) design that significantly strengthens the security and
unclonability of strong PUFs. While the IPN structure itself
provides high resilience against modeling attacks, the recon-
figuration mechanism remaps the input-output mapping be-
fore an attacker could collect su�cient CRPs. Experimental
results show that all tested state-of-the-art machine learning
attack methods have prediction accuracy of around 50% on
a single bit output of a reconfigurable IPN.

1. INTRODUCTION
As of today, the amount of private information stored on

and flows between electronic devices is unimaginable. Ad-
versaries are highly motivated to attack these electronics be-
cause of the potential benefits they can gain from the stolen
personal information. Secure and robust protection of elec-
tronics, as a result, is essential for any individual who seeks
security and privacy.

Physical Unclonable Functions (PUFs) came to the stage
when traditional cryptography failed to stand its ground
against physical attacks, side-channel attacks, and API at-
tacks. A PUF, di↵erent from traditional key-based crypto-
graphic systems, does not require a secret binary key; in-
stead, the physical entity itself serves as the key. One huge
advantage of a PUF-based system is that the secret key hid-
den within the physical body is designed to be unclonable
since it utilizes uncontrollable, nanoscale process variations.
The complex structure of a PUF makes the output much
harder to be predicted or derived comparing to those digital
systems that stores secret keys in non-volatile memories.

The rise of machine learning technology provides adver-
saries with a powerful weapon that is capable of creating a
model of the function a PUF implements. A mathematical
model is a software program that is capable of predicting
the corresponding responses of a PUF when provided with
random challenges with high probability. Such mathemati-
cal model can be easily established by learning from a small
subset of CRPs.

In this paper, we intend to address this problem. We pro-
pose a reconfigurable interconnected PUF network structure

that is capable of providing su�cient robustness and resilient
against di↵erent types of machine learning attacks. Essen-
tially the idea is to create a network structure that intercon-
nects multiple PUFs so that the system is so complex that
current machine learning attack methods are unable to ac-
curately predict the responses given arbitrary challenges in a
reasonable amount of time. The proposed design is capable
of reconfiguring itself so that challenge-response mappings
completely alter. The reconfiguration of an IPN forces an
adversary to restart the attack to learn a new mapping func-
tion.

2. RELATED WORK
PUF was first proposed by Pappu et al. using mesoscopic

optical systems [1]. A variety of PUFs and related appli-
cations have been proposed ever since including APUFs [2],
ring oscillator PUFs [3], and SRAM PUFs [4]. PUFs have
been well studied in many hardware security applications.
Gu et al. propose several low power applications based on
PUF including computing-while-racing PUF [5] and PUF-
based system anomaly detector [6]. Zhang et al. proposed
a PUF-FSM binding scheme for IP-protection [7]. Xu et
al. proposed an ultra-low energy PUF matching scheme us-
ing programmable delay lines [8]. PUFs can also be used
to construct Recursive Inverse Functions(RIF) that provide
fast and ultra-low energy encryption and decryption for data
protection [9].

Though PUFs have been improved over the years, they
are vulnerable to a variety of modeling attacks. Early works
on modeling attack targeting PUFs were focused on stan-
dard arbiter PUFs [10]. Later on Rührmair et al. presented
modeling attack results on multiple commonly seen PUFs,
including APUFs, XOR PUFs, feed-forward PUFs. The
proved that all investigated PUFs are vulnerable to machine
learning attacks [11].

To the best of our knowledge, we are the first to propose an
easy reconfigurable interconnected PUF network structure
to strengthen the security and resilience against machine
learning attacks.

3. PRELIMINARIES

3.1 IPN

3.1.1 IPN Node

An IPN consists of nodes and edges. A node consists of
multiple arbiter PUFs of the same length. We define an n-bit
IPN node of size m consists of m n-bit APUFs. If m = n,

a node is denoted as a homogeneous node, otherwise it is
denoted as a heterogeneous node. The size of a node is the
total number of arbiter PUFs running in parallel, and the
length of a node is the number of segments of each arbiter
PUF in the node. An IPN node takes an n-bit vector as the
challenge and generates m 1-bit responses. All PUFs within
the same IPN node share the same challenges.

3.1.2 IPN Edge

An IPN node connects to other nodes through edges. In
order to achieve reconfigurability, an edge is essentially de-
signed to be a shu✏er that takes the output from the pre-
vious node, shu✏es the order and feed them to the next
node. A configuration vector is used to configure how the
connections between two nodes are shu✏ed. For example,
if an edge is an n-bit shu✏er that directs the i-th bit of the
input to the n�1� i-th output bit, the configuration vector
would be {n � 1, n � 2, ..., 2, 1, 0}. All output port num-
bers are represented in the binary form. The connections
between nodes can be reconfigured easily by changing the
configuration vector. We define a configuration of an IPN
as a collection of all configuration vectors for all shu✏ers in
the IPN.

3.1.3 IPN Chain

A simple network can be constructed by connecting IPN
nodes using to form a chain. Figure 1 shows a simple IPN
chain with three nodes. All IPN nodes are connected through
IPN edges. An edge from nodei to nodei+1 indicates that
the output of nodei is fed into a shu✏er, then connects to all
APUFs in nodei+1. Thus, each APUF in nodei+1 depends
on the outputs of all APUFs in nodei. Figure 1

node 0 node 1

Shuffler

m m
node 2

l

Shuffler

Challenge Response
n kl

Figure 1: A simple IPN chain with three nodes and two
edges. node0 has size m and length n, node1 has size l and
length m, node0 has size k and length l. n � m � l � k.

IPN nodes can be connected in more complex manners.
IPN supports not only one-to-one but also one-to-many,
many-to-one and many-to-many connections between nodes.

We define the depth of an IPN as the length of the shortest
path from an input node to an output node. The width of
an IPN is defined as the maximum number of nodes that
shares the same input.

4. RECONFIGURATION
IPNs benefit from the complex structure so that it requires

much larger training set and longer training time to model.
We propose to reconfigure the entire network from time to
time by changing the connections between IPN nodes so that
any obtained knowledge on the IPN would be invalidated.

4.1 Reconfigure Timing
Su�cient size of the training set is also known as the

sample complexity. We consider models of all PUF-based
system mentioned in this paper as a binary function that
takes a challenge and generates a 1-bit output of either 0 or
1. Vapnik-Chervonenkis theory suggests that a PUF-based

system can be learned with a finite sample complexity and
the minimum required training size (N) follow the below
relation:

N = O(
V C(H) + ln(1�)

✏
) (1)

where VC(H) is the Vapnik-Chervonenkis dimension of
the functionH implemented by the attacked PUF-based sys-
tem, � is the failure probability and ✏ is the learning error.

For arbiter PUF, the VC-dimension is the total number
of stages, meaning for a k-bit arbiter PUF, V C(H) = k.
Rührmair et al. derived the VC-dimension for XOR PUFs
as V C(H) = k · l where k is the number of stages in each
arbiter PUF and l is the total number of XORs. For Feed-
forward PUFs, V C(H) = k + l can be used to describe the
model better where k is the total number of stages and l is
the total number of feed-forward loops.

The sample space of an IPN on the other hand largely
depends on the topology of the network. We have to be
conservative in terms of finding a uniform lower bound for
all topologies. The depth of the network conceptually is
very similar to Feed-forward loops in Feed-forward PUFs,
whereas the width of the network can be analogized to the
size of XOR PUFs. Equation 2 describe a sample size lower
bound in terms of the IPN model parameters, wherem is the
depth of the IPN network and n is the width of the network.
To be noted that we assume each single path within the
network to be of width n and depth m.

N ⇠ (m · k +m) · n+ ln(1�)

✏
(2)

For each IPN structure, we derive a empirical formula
based on equation 2 by assuming a linear y = ax + b re-
lationship. The derived formula failed to match with the
evolution strategies result due to the random nature of evo-
lution strategies. The data points we collected from evolu-
tion strategies shows a super-linear relationship between N
and ✏. Thus, we adopt the method proposed by Rührmair et
al. and modify the relationship to equation 3 when applying
evolution strategies to match the superlinear relationship. c
is a constant between 0 and 1.

N ⇠ (m · k +m) · n+ ln(1�)

✏c
(3)

An IPN-based system requires much larger training set
comparing to standard arbiter PUFs, XOR PUFs and Feed-
forward PUFs of the same size. This can be observed when
comparing equation 2 to the lower bounds proposed in [11].

4.2 Reconfiguration Logic
We use a counter to count how many CRPs have al-

ready been generated, and we compare it with a predefined
threshold. To be more conservative, we set a reconfiguration
threshold ⇥ to a number that is smaller than the theoretical
lower bound of su�cient CRPs using equation 4. Instead of
assuming the network has the maximum width n on every
level (Equation 2), we assume each single path within the
network to be of minimum width n0 and depth m. Once ⇥
has been reached, a random number generator generates a
new set of configuration vectors, and feed them to the IPN
shu✏ers.

⇥ =
m · k · n0 + ln(1�)

✏
(4)

5. EVALUATION RESULTS
Our evaluation is conducted on both simulated models as

well as implementations on a Xilinx Virtex-5 XC5VLX50T
FPGA. Our simulation assumes a Gaussian distribution in
all delays and no error in contrast to real distribution and
real errors in the implementation. As a comparison, we com-
pare di↵erent IPN setups along with standard arbiter PUFs,
XOR PUFs, and feed-forward PUFs. For fairness consider-
ations, we maintain the total number of PUF segments used
in both simulation and implementation the same over dif-
ferent structures.

5.1 Logistic Regressions
In our security evaluation of IPN using logistic regres-

sion, we use standard gradient descent, IRLS, and RProp as
the optimization method. In an attempt to model a simple
IPN with reconfiguration functionality disabled, the di↵er-
ence between all three optimization method is negligible.

We maintain the total number of PUF segments used in all
settings to be around 1,024. For all architecture except stan-
dard arbiter PUF, the training set contains 30,000 CRPs,
and the running time is set to unlimited. For each setting,
we run 100 times and the simulated results showed in figure
2a is chosen from the best of 100 runs.

(a) Logistic regression attacks

result. Error vs. iterations.

(b) Evolution strategies attack

result. Error vs. iterations.

Figure 2: Logistic regression and evolution strategies attack
result using 30,000 CRP training set on five PUF-based sys-
tems.

Based on the result, we believe it is safe to conclude on
two observations. (1) Feed-Forward loops provide excellent
resilience against logistic regressions because the internal de-
pendency introduced by feed-forward loops makes the model
of the whole architecture no longer di↵erentiable. Any at-
tack methods that take advantage of linear separable or dif-
ferentiable models would be extremely ine�cient or simply
not work at all. (2) A deeper IPN provides better protec-
tion against logistic regression attack. The multiple layers
of dependencies make the system even more complicated so
that gradient information is of no help regarding modeling
such a system.

5.2 Evolution Strategies
In our security evaluation of IPN using evolution strate-

gies, we use both canonical versions, respectively (µ/⇢,�)�
ES and (µ/⇢ + �) � ES with and without the mini-batch

style of fitness evaluation method. Both canonical versions
of evolution strategies were applied to all investigated PUF-
based systems, each with 100 runs. The best results among
the 100 runs are shown in figure 2b.

Based on the result, we believe it is safe to conclude on two
observations. (1) Nonlinear logic functions like XORs dra-
matically increase the di�culty for evolution strategies at-
tack models, whereas feed-forward loop provides limited ad-
ditional complexity against evolution strategies. (2) A wider
IPN provides better protection against evolution strategies
attack. This conclusion is not surprising as a wider IPN
introduces more XORs which provides much more nonlin-
earity. Despite the nonlinearity introduced by XORs, we
still observe that an IPN of width 1 and depth 4 still per-
forms better than 256-bit 4-XOR PUF when provided with
the same training set.

5.3 Multilayer perceptron
In our security evaluation of IPN using MLP, we reform

the task as a binary classification problem. We experiment
with di↵erent network configuration parameters. After some
experiment, we find that a MLP with n layers and mi neu-
rons in each layer provides the best results and speed where
n is the depth of the network and mi is the total number
of PUF segments on the i-th level. The activation function
we used are ReLU activations and the loss function used is
binary cross entropy. We use Adam as the optimizer. We
set the number of epochs to a constant of 100 so that we
have a total number of CRPs/100 as our batch size.

Comparing to logistic regression and evolution strategies,
an MLP does not necessarily require details in PUF archi-
tecture; instead, it treats the entire PUF as a black box and
learns the function based on only input and output. Table 1
shows the result of applying MLP modeling to all discussed
PUF systems.

Architecture Training Acc. Test Acc.
IPN depth 4 width 1 99.93% 50.18%
IPN depth 2 width 4 99.77% 50.33%
256-bit 4-XOR PUF 99.73% 96.02%
1024-bit arbiter PUF 99.99% 98.28%
1024-bit 64-↵ PUF 99.99% 95.68%

Table 1: Deep neural network attack results.

MLP is capable of fitting 30,000 CPRs with above 99%
training accuracy, and can predict 256-bit 4-XOR PUF, 1024-
bit arbiter PUF and 1024-bit 66-↵ PUF with above 95%
test accuracy. However, it ran into overfitting problem when
modeling IPNs. After attempting various overfitting preven-
tion techniques including regularization layers and dropouts,
we conclude that the root of the overfitting problem is insuf-
ficient training samples. IPNs is more complex comparing
to other PUF systems. Thus, given a non-su�cient train-
ing dataset, the overfitting problem is more severe. When
provided with a much larger dataset (5,000,000 CRPs in
simulation), the test accuracy can be boosted to 86.49% for
IPN with depth 4 width 1 and 78.01% for IPN of depth 2
width 4. When applying the same training set, the test ac-
curacy converges at 54.77% and 62.54% respectively, much
lower than MLP attack results.

5.4 Other Machine Learning Algorithms

AutoML is still under development, yet it provides promis-
ing results compared to MLP attacks in terms of modeling
PUF-based systems. We provided only raw CRPs to the
auto-sklearn module, and the results for all tested architec-
tures are shown in Table 2.

Architecture Best algo. Test Acc.
IPN depth 4 width 1 Decision tree 64.87%
IPN depth 2 width 4 Decision tree 67.27%
256-bit 4-XOR PUF K-NN. 83.88%
1024-bit arbiter PUF Multinominal NB 89.55%
1024-bit 64-↵ PUF Multinominal NB 72.33%

Table 2: Auto-sklearn modeling results on raw CRPs.

In general, the best classifiers for IPNs are decision-tree
classifiers, which is capable of predicting over 65% of CRPs
in the test set. XOR PUFs, arbiter PUFs, and Feed-forward
PUFs are much easier to model since auto-sklearn is capable
of finding a classifier (such as K-nearest neighbor or multi-
nominal naive Bayes classifiers) that successfully predicts
the test set CRPs with accuracy over 70%.

5.5 Implementation Result
We implemented a 64-bit reconfigurable IPN of depth 4

and width 4 on a Xilinx Virtex-5 board. According to our
derived formula on sample complexity of IPNs, the su�cient
number of CRPs required to predict a single bit response
with 95% accuracy is 716,703 CRPs. We set the reconfigura-
tion threshold to 358,350 CRPs, and we collected 1,000,000
CPRs (with duplications) as our training set. Table 3 shows
the prediction accuracy of 10,000 test challenges with and
without reconfiguration functionality.

Attack Method w/out Reconfig. with Reconfig.
Logistic Regression 64.62% 53.19%
Evolution Strategies 72.13% 49.99%
MLP 80.64% 51.89%

Table 3: Prediction accuracy of three attack methods. Re-
sults collected from a 100,000 test set. Logistic regression:
14 days; evolution strategies: 250,000 generations, 14 days;
MLP: 18 hours.

6. CONCLUSION
We have carefully studied an interconnected PUF network

structure that connects PUFs to build a network in this pa-
per. Our simulation and implemented results show that the
IPN has a complex structure so that it enables itself to stay
robust against not only traditional PUF modeling methods
like logistic regression and evolution strategies but also to
the state-of-the-art methods like deep neural networks and
autoML.

To eliminate the possibility of being modeled with a large
training set, we propose to make an IPN reconfigurable by
shu✏ing the interconnections between IPN nodes. Before
an adversary can collect su�cient CRP sets for training pur-
poses, the IPN reconfigures itself so that the attacker would
not be able to obtain enough information on the IPN. To
avoid storing the configuration vectors, we propose to use
another set of PUFs to protect the configuration vectors

from being stolen. Our experimental results indicate that
no investigated attack is capable of accurately modeling an
IPN. The single bit prediction accuracy for all attacks, when
provided with a training set larger than the theoretical lower
bound and 14 days of time, is around 50%.

7. ACKNOWLEDGEMENT
This work was supported in part by the NSF under Award

CNS-0958369, and Award CNS-1059435.

8. REFERENCES
[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld,

“Physical one-way functions,” Science, vol. 297,
no. 5589, pp. 2026–2030, 2002.

[2] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas,
“Silicon physical random functions,” in Proceedings of

the 9th ACM conference on Computer and

communications security, pp. 148–160, ACM, 2002.
[3] G. E. Suh and S. Devadas, “Physical unclonable

functions for device authentication and secret key
generation,” in Proceedings of the 44th annual Design

Automation Conference, pp. 9–14, ACM, 2007.
[4] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and

P. Tuyls, FPGA intrinsic PUFs and their use for IP

protection. Springer, 2007.
[5] H. Gu, T. Xu, and M. Potkonjak, “An energy-e�cient

puf design: Computing while racing,” in Proceedings of

the 2016 International Symposium on Low Power

Electronics and Design, pp. 142–147, ACM, 2016.
[6] H. Gu, T. Xu, and M. Potkonjak, “A low-power

apuf-based environmental abnormality detection
framework,” in Low Power Electronics and Design

(ISLPED, 2017 IEEE/ACM International Symposium

on, pp. 1–6, IEEE, 2017.
[7] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A puf-fsm

binding scheme for fpga ip protection and
pay-per-device licensing,” IEEE Transactions on

Information Forensics and Security, vol. 10, no. 6,
pp. 1137–1150, 2015.

[8] T. Xu, H. Gu, and M. Potkonjak, “An ultra-low energy
puf matching security platform using programmable
delay lines,” in Reconfigurable Communication-centric

Systems-on-Chip (ReCoSoC), 2016 11th International

Symposium on, pp. 1–8, IEEE, 2016.
[9] T. Xu, H. Gu, and M. Potkonjak, “Data protection

using recursive inverse function,” in Field

Programmable Logic and Applications (FPL), 2015

25th International Conference on, pp. 1–4, IEEE,
2015.

[10] M. Majzoobi, F. Koushanfar, and M. Potkonjak,
“Testing techniques for hardware security,” in Test

Conference, 2008. ITC 2008. IEEE International,
pp. 1–10, IEEE, 2008.

[11] U. Rührmair, J. Sölter, F. Sehnke, X. Xu,
A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber,
W. Burleson, and S. Devadas, “PUF modeling attacks
on simulated and silicon data,” IEEE Transactions on

Information Forensics and Security, vol. 8, no. 11,
pp. 1876–1891, 2013.

