
An Energy-Efficient PUF Design: Computing While Racing

Hongxiang Gu, Teng Xu, and Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles
{hxgu, xuteng, miodrag}@cs.ucla.edu

ABSTRACT
Physical unclonable functions (PUFs) take advantage of the
effect of process variation on hardware to obtain their un-
clonability. Traditional PUF design only focuses on the ana-
log signals of circuits. An arbiter PUF, for example, gener-
ates responses by racing delay signals. Implementations of
such PUFs usually employ large area and power consump-
tion while providing very low throughput.

To address this problem, we propose an energy efficient
PUF design in such a way that it races analog signals and
computes digital logic simultaneously. More importantly,
the analog portion of the circuit (racing) shares a large
amount of hardware resources with the digital portion of
the circuit (computing) by introducing only small overhead
in terms of area and power. Our test results on Spartan-
6 field-programmable gate array (FPGA) platforms indicate
that by combining the two outputs, our design enables much
larger PUF output throughput, better randomness and less
power consumption compared to traditional PUFs.

CCS Concepts
•Hardware → Power and energy;

Keywords
PUF; random number generator; FPGA;

1. INTRODUCTION
There are two major concerns for modern logic designs:

power and security. The prevailing portable devices such
as mobile phones, tablets, and laptops impose high require-
ments on the low power design and applications due to the
highly constrained power supply. Protecting mobile devices
is more challenging than securing non-portable devices not
only because of the emergence of novel attack methods such
as malicious mobile software, mobile phone trojans, and
even electromagnetic side-channel attacks, but also due to
the fact that traditional security approaches usually demand

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934604

high power cost, and thus are not applicable on mobile de-
vices due to limited power supply. Therefore, the desire for
lightweight security primitives is stronger than ever.

A PUF, as a unique type of hardware security primitive,
has excellent low power, high speed, and unclonablity prop-
erties. An individual PUF is a piece of hardware imple-
menting a one-way function which takes advantage of the
inevitable process variation to guarantee uniqueness of the
function. The input-output mapping function of an individ-
ual PUF is deterministic but unpredictable, due to the fact
that process variation is not predictable. As a hardware se-
curity primitive, PUF employs lower overhead comparing to
traditional software-based cryptographic approaches. More
importantly, a PUF itself is unclonable which provides pro-
tection at the physical level.

However, PUFs suffer from significant drawbacks as well.
Two of the most important concerns are related to output
throughput and randomness. As an example, an arbiter
PUF has an n-bit challenge vector and only a single output
bit. When used to encrypt and decrypt messages in real ap-
plications, n is usually set to be at least 64, in which case the
ratio between the PUF output and the PUF input is 1 : 64
or lower. The other concern is associated with the random-
ness of PUF outputs. The unpredictable and uncontrollable
nature of process variation creates unbalanced delay path
routing in PUFs. The frequency of 0s and 1s in the out-
puts are usually not equal which compromises the security
of PUFs. Other randomness problems such as repeated pat-
terns in outputs and strong PUF input-output correlations
can also be observed in some implementations.

We propose a novel PUF design which avoids the above
PUF problems while keeping it low-delay, low-power and
physically unclonable. We focus specifically on arbiter PUFs.
Our design is motivated by the following observation. Tra-
ditional arbiter PUFs focus on the analog properties of cir-
cuits, for example, delays in the case of arbiter PUFs. Two
signals are sent as inputs to the two paths of the PUF, and
depending on which path has a longer delay, one signal will
arrive at the arbiter first, thus producing a 1 or 0 accord-
ingly. However, the PUF circuit itself is capable of serving
beyond racing delay signals; it can also be used to convey
meaningful digital information. In arbiter PUFs, each delay
component is made of transistors/gates. Therefore, when
connecting these gates in a particular manner, the overall
design can compute specific functions.

Our key idea is to use the same piece of hardware to com-
pute digital logic while racing analog signals at the same
time. With only small extra area overhead, our circuit de-

sign will generate two types of outputs, respectively analog
outputs from the PUF, and digital outputs from the digital
logic. Moreover, both outputs are generated in the same
clock cycle. By combining the above two outputs, we ex-
pect to keep the unclonability of PUFs while gaining the
advantage of digital circuits.

The digital portion of the circuit can be designed to im-
plement any functionality. In our design, we have specifi-
cally chosen leap-forward linear feedback shift register (leap-
forward LFSR) for the following reasons. First, a leap-
forward LFSR is a pseudo-random number generator; by
combining PUF outputs with leap forward LFSR outputs
(e.g., XOR the two outputs), the combined result will be
highly random. Second, a leap-forward LFSR generates
large outputs in a compact area, thus, without introducing
extra hardware or delay, the output throughput is highly
boosted.

To summarize our contributions, we propose a power effi-
cient PUF design by combing traditional arbiter PUFs with
leap forward LFSRs. Our design only introduces a small
area overhead as the arbiter PUF and the leap forward LFSR
share a majority of hardware and signal resources. With a
single execution of the circuit, both outputs are generated si-
multaneously. By combining the arbiter PUF outputs with
the leap forward LFSR outputs, the system gains higher
throughput as well as better randomness. Our design and
implementation is based on, but not limited to, FPGA plat-
forms. We have described our detailed implementation in
Section 6.

2. RELATED WORK

2.1 Physical Unclonable Functions
PUF was first proposed by Pappu et al. using mesoscopic

optical systems [1]. Gassend et al. developed the first silicon
PUFs through the use of intrinsic process variation in deep
submicron integrated circuits [2]. A variety of other types
of PUFs have since been proposed, including arbiter PUFs
[2], ring oscillator PUFs [3], SRAM PUFs [4], and butterfly
PUFs [5]. Majzoobi et al. proposed to use FPGA based pro-
grammable delay lines to build delay PUFs [6]. Numerous
traditional protocols can be interpreted using PUFs, rang-
ing from the traditional security key communication and
authentication [7] to more sophisticated public key commu-
nication [8] with the key idea of employing the high un-
predictability of PUF responses to secure the information.
More recently, Xu et al. created PUF-based recursive in-
verse function [9] and digital bidirectional function [10] to
protect sensitive data with ultra low area, latency and en-
ergy overhead.

2.2 Hardware Random Number Generators
Random number generators are widely used in many se-

curity applications. James has reviewed a majority of com-
monly used random number generators [11]. In the past,
random number generation was mostly done by software.
However, as hardware systems become cheaper, faster, and
more lightweight, it is feasible and more power efficient to
implement the random number generators directly in hard-
ware. A number of HRNGs are proposed based on different
technologies. Using PUFs to build an HRNG was first pro-
posed by O’Donnell from MIT [12]. Our work implements
the design of leap-forward LFSRs which is an extension of

the standard LFSR by allowing all shifts in the standard
design to be applied in a single clock cycle [13].

3. DESIDERATA
Our work is the first effort to take advantage of both ana-

log properties as well as digital properties of a circuit to
create a security primitive. The analog properties are used
to build an arbiter PUF while the digital properties are real-
ized by creating a leap-forward LFSR. Before discussing our
detailed design and implementation, we identify the archi-
tectural, operational, and security desiderata of our work.

• In terms of architecture, we have created a “one cir-
cuit, two outputs” design. The PUF portion and the
LFSR portion of our designed circuit share almost the
same hardware resources, consequently, it saves area
and lowers the power consumption.

• In terms of operation, our design achieves high through-
put by employing only small delay since the digital
outputs and the analog outputs are generated in the
same clock cycle without timing overhead.

• In terms of security, by combining the arbiter PUF
output with the LFSR output, the final system output
has kept the unclonability of the original PUF while
the randomness is enhanced from LFSR.

4. PRELIMINARIES

4.1 PUF Model
The PUFs we use for signal racing are standard arbiter

PUFs. Figure 1 shows the schematic diagram of the PUF
model. The basic structure of an n-bit PUF consists of n
delay segments. The two propagation delays in the ith seg-
ment are denoted as d0i and d1i respectively. The two delays
are designed to be nominally equal to each other, but after
manufacturing, the effect of process variation will cause un-
predictable delay difference between them. When built on
an FPGA, the upper delay and the lower delay in each seg-
ment are directly implemented using LUTs with the same
size. Two identically designed paths are generated by con-
necting delay components from each segment, and an arbiter
is placed at the end of the two paths. The two paths can be
modified using the control bit of each segment. When the
control bit is 0, the two paths will not shuffle. When the
control bit is 1, the two paths swap. For example, in Figure
1, if the control bit of the ith segment is 0, then d0i stays
with the upper path and d1i stays with the lower path. How-
ever, if the control bit is 1, d0i shuffles to the lower path and
d1i shuffles to the upper path. Note that when the shuffling
happens, all the delays that connect prior to d0i (d1i) will be
shuffled at the same time.

The vector consisting of all control bits is denoted as the
PUF challenge. When an n-bit challenge (c1c2...cn−1cn) is
provided to the PUF, two identically designed paths are gen-
erated. To retrieve a response, an impulse signal is fed into
the system to excite both paths simultaneously. Because of
process variation, the signal traveling along one of the two
paths will reach the arbiter earlier, generating a correspond-
ing arbiter output denoted as the PUF response.

d1
0 d2

0

d2
1d1

1

0

1

0

1

0

1

0

1

0

1

Rising Edge

n-bit challenge:
C1 C2 Cn

0

1

0

1

dn
0

dn
1

Response

A
rb

ite
r

Figure 1: The model of arbiter PUFs with an n-bit
challenge.

4.2 Leap-Forward LFSR
A LFSR is a commonly seen pseudo-random number gen-

erator (PRNG). The leap-forward LFSR method utilizes
only one LFSR and shifts out several bits. This method
is based on the observation that a LFSR is a linear system
and the register state is expressed as Q(i + 1) = A ∗ Q(i).
Q(i+ 1) and Q(i) are the initial values at (i+ 1)th and ith
steps; A is the transition matrix.

To calculate the content in shift registers after k steps,
the equation transforms into: Q(i+ 1) = Ak ∗Q(i). We can
compute Ak and determine the XOR structure accordingly.
The new circuit leaps k steps in one clock cycle while the
circuit uses identical shift registers.

To illustrate the idea, Chu et al. proposed a motivational
example of a 4-bit leap-forward LFSR [13]. The derived
new transitional matrix A4 is calculated from A, which is
obtained from a single-bit LFSR random number generator.

A =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1

, A4 =

1 0 0 1

1 1 0 1

1 1 1 1

1 1 1 0

After performing the operations, we can derive the feed-

back equation for each signal as:

q0 next = q0⊕ q3 (1)

q1 next = q0⊕ q1⊕ q3 (2)

q2 next = q0⊕ q1⊕ q2⊕ q3 (3)

q3 next = q0⊕ q1⊕ q2 (4)

Note that the final transition matrix depends only on the
initial transition matrix, thus, different initialization values
in shift registers will lead to a different number of XOR
logics required in a multi-bit leap-forward LFSR. A 64-bit
leap-forward LFSR takes at most 125 XOR gates to build.

5. ARCHITECTURE

5.1 Observations
We observed some opportunities that can be taken to fur-

ther improve a conventional FPGA-based arbiter PUF im-
plementation.

5.1.1 Signal Encoding
In a conventional arbiter PUF implementation, the pair

of racing clock signals clki1 and clki2 after the ith segment
is always synchronous with the original input signals clkorig1

and clkorig2 . One observation is that the synchronization is
not strictly enforced, as long as clki1 and clki2 are in phase,

the arbiter appended at the end of the PUF is able to ac-
curately catch the faster signal. This observation enables us
to encode racing signals to digital signals. For example, if
clki1 and clkorig1 are in phase, we encode clki1 as a 0 and if
they are in antiphase we encode it as a 1.

5.1.2 LUT Utilization
FPGA implementation of arbiter PUFs utilizes LUT6 2 to

race signals. An LUT6 2 is a 6-input, 2-output look-up table
that is able to act as two LUT5s that shares the same inputs
or just a single LUT6 depending on the control bit. Among
the six inputs bits, the control bit (most significant bit) is
set to 1 in order to transform the LUT6 2 into two LUT5s.
The second most significant bit is usually used as a selection
bit that decides the traveling path inside the LUT. This bit
serves as a challenge bit of the arbiter PUF. The next two
bi ts are fixed to constant 1s. The two least significant bits
are used to take two racing clock signals. We observe that
a conventional arbiter PUF implementation does not fully
utilize all the possible resources of LUT6 2. If we allow anti-
phased signals between PUF segments, we could change the
3rd and 4th bits from static 1s to user defined values. The
conventional design of enforcing two static bits is equivalent
to leaving a LUT2 unused for every LUT6 2 in the delay
chain.

5.2 Overall Design
We propose producing logical output and signal racing

results simultaneously on the same hardware. Our design
takes a pair of impulse signals as input, and because of pro-
cess variation, two racing signals do not arrive at the finish
line (arbiter) at the same time. Meanwhile logical computa-
tions are performed based on the logical input and the result
is carried on the bypassing racing signals using encoding.
Thus, we generate two outputs, each of which is completely
uncorrelated. Consequently, an advantage of our design is
that we are able to reduce overall power and area by sharing
hardware and wires.

LFSR 0

LFSR 1

LFSR 2

LSFR 3

LFSR 4

LSFR 5

LSFR 6

LSFR 7

Arbiter PUF
Challenge

Racing
Signals

PUF
Response

Random
Number

Post
Processing

Arbiter PUF

Random
Seed

Figure 2: High level illustration of proposed design.

We propose to load leap-forward LFSRs on top of a con-
ventional arbiter PUF as shown in Figure 2. The arbiter
PUF and multiple LFSRs share the same hardware but gen-
erate different outputs. The arbiter PUF takes PUF chal-
lenges to configure internal paths for the delay signals to
race. Meanwhile, leap-forward LFSRs are designed on top
of the arbiter PUF to generate digital random numbers.

Eventually, the leap-forward LFSR output and the ar-

biter PUF response are combined using a post process mod-
ule (in our case we use XORs and a Von Neumann cor-
rector). The final output leverages advantages from both
sources: it inherits high throughput and high randomness
from leap-forward LFSRs and physical unclonablity from ar-
biter PUFs.

6. IMPLEMENTATION
We utilize LUT6 2 on FPGAs to demonstrate the feasi-

bility of our design. Figure 4 shows our overall implemen-
tation. Our design maintains the LUT chain structure and
some LUT input pin assignments from the conventional ar-
biter PUF implementation. However, the third and fourth
input bit of each LUT6 2 are no longer restricted to constant
1s. Instead, they are now open to any user-defined values.
We use these two bits along with unconstrained initialization
vector (INIT) bits to implement an additional XOR gate on
top of the LUT6 2. We then use these XOR gates to imple-
ment leap-forward LFSRs. The output of the XOR gate is
encoded from the racing signal using a flip-flop. Depending
on if the signal is in phase or antiphase with the clock signal,
the result of XOR gate is encoded as 0 or 1.

6.1 Implementation of Arbiter PUF
The arbiter PUF retains the same structure as a conven-

tional FPGA-based design. Each LUT6 2 implements a sin-
gle segment of an arbiter PUF. We have made modifications
to the implementation to allow racing signals to carry addi-
tional digital information. Note that our modification still
maintains signal synchronization by keeping two racing sig-
nals in phase throughout the racing process.

LUT6_2 LUT6_2

Figure 3: The two output signals from LUT6 2 are
required to be in phase, but can be inverted simul-
taneously.

6.1.1 Allowing Antiphase Signals
In our design, we no longer require signals traveling be-

tween LUTs to be synchronous with the clock signal. Figure
3 shows a possible scenario where the signals are inverted af-
ter traveling through the first LUT and inverted again after
the second LUT. Our encoding scheme (in-phase encoded as
0 and antiphase encoded as 1) allows us to carry computa-
tional output on racing signals that are traveling through
the arbiter PUF chain.

Additional constraints on the INIT value of LUTs need to
be applied to allow such functionality. All INIT values must
fulfill both requirements below:

• The most significant 32 bits must be mirrored to the
least significant 32 bits in units of 4 bits. For example,
the mirror image of 1100 1010 would be 1010 1100.

• INIT [4k] ⊕ INIT [4k+3] = 1 for k (k ∈ {0, 1, ..., 15}).
The value of INIT [4k] and INIT [4k + 3] are decided
by the computational logic.

The first constraint is applied to guarantee the upper and
lower LUT5s within the LUT6 2 to be the same, thus cre-
ating theoretically identical racing paths. The second con-
straint is enforced to create racing paths that signals can
propagate through. These constraints together guarantee
that the two outputs of each LUT6 2 are two in-phase clock
signals instead of static outputs or out of phase signal pairs.
All bits that are not restricted by the rules can be customized
to program arbitrary logic.

6.1.2 Arbiter
The arbiter used to capture the faster-racing signal is as

simple as a SR latch. However, since we allow the signals
to be inverted, the phase of the final output of each chain
now relies on the implemented logic instead of staying un-
changed. Whether the racing signals at the “doorstep” of
the arbiter are in phase with the clock signal or not, our
original SR latch-based arbiter is still able to produce the
correct result. Thus, the original PUF functionality is not
compromised.

6.2 Implementation of leap-forward LFSRs
Leap-forward LFSRs are implemented using XOR gates

and flip-flops. A 64-bit leap-forward LFSR requires only 64
flip-flops and 125 XOR gates. However, the wiring complex-
ity of a 64-bit leap-forward LFSR is nontrivial. As the size
of leap-forward LFSRs grows, the wiring complexity grows
dramatically. To avoid the wiring overhead, we implement
multiple 64-bit leap-forward LFSRs on top of our arbiter
PUF design.

6.2.1 XOR Gates
According to our modification on the arbiter PUF design,

it is possible to implement an additional XOR gate on the
LUT6 2. Table 1 shows the rules needed to implement the
XOR logic in addition to the constraints described in sec-
tion 6.1.1. For example, a valid assignment of INIT[31:0] is
8518C3EA, the mirrored INIT[63:31] would be AE3C9158.

The XOR results are then encoded according to rules de-
scribed in section 5.1.1. The two outputs of LUT6 2 are
guaranteed to be identical based on the constraints we set,
so the XOR result can be retrieved by encoding either of
them.

Position in INIT[0:31] Init value
0,7,11,12,16,23,27,28 0
3,4,8,15,19,20,24,31 1
Other -

Table 1: INIT value rules for implementing XOR
gates.

6.2.2 Flip-Flops
The flip-flops serve two purposes. First they are used to

extract digital information from the racing signal. Second,
they are used to store the results of leap-forward LFSRs.
In our implementation, we reuse some flip-flops for both
purposes to save area and power. Each leap-forward LFSR
requires at most 125 flip-flops.

Arbiter

Logic input

Racing signal 2

Logic Output 1

Racing Output

Challenge bit

Logic input

Challenge bit

Logic Output n

2 2

Racing signal 1

XOR

LUT6_2

D Q D Q

LUT6_2

XOR XOR

LUT6_2

Figure 4: Overall implementation using LUT6 2 on FPGA.

6.3 Post Process
64 LUT6 2s and an SR latch are needed to implement a

64-bit arbiter PUF while a 64-bit leap-forward LSFR im-
plementation uses 125 XOR gates and 125 flip-flops. This
means that we can load four 64-bit leap forward LSFRs on
top of eight 64-bit arbiter PUFs. The throughput ratio of
arbiter PUF and LFSR is then 1:32 (8 : 4 × 64). We claim
that simple XOR operations to combine both outputs pro-
vide sufficient randomness. The XOR operation is done be-
tween the concatenation of all leap forward LFSR outputs
(4× 64bits) and a string consists of self-concatenation of ar-
biter PUF outputs (32 times, which makes it 8 × 32bits).
By combining the two outputs, we are able to boost the
system throughput by 32× compared to conventional eight
64-bit arbiter PUFs. Note that the randomness can be fur-
ther improved by applying Von Neumann correction on the
arbiter PUF results before the XOR operations. The result
randomness is evaluated in section 7.2.

7. EXPERIMENTAL RESULTS
In our implementation, we combine leap-forward LFSRs

with an arbiter PUF by sharing hardware and wires. Our
motivation is to create a security primitive that inherits the
advantages of both while staying free of their drawbacks.
We carefully evaluate area, power and output randomness
of our proposed implementation in this section.

7.1 Area and power
We claim that by sharing hardware and signals, we are

able to utilize area and power more efficiently. To evaluate
our design, we implement four 64-bit leap forward LFSRs
and eight 64-bit arbiter PUFs using the same hardware re-
sources on a Spartan-6 XC6SLX45 FPGA. In each clock
cycle, our design generates 256-bit post processed output.
We compare our design with standalone leap-forward LFSRs
and arbiter PUFs that generate the same output through-
put (256 bits). We have also compared our hardware sharing
design with non-sharing designs on four 64-bit leap forward
LFSRs and eight 64-bit arbiter PUFs. The comparison re-
sult is shown in Table 2.

Even though we spend more power and area than leap-
forward LFSRs, our design gains the advantage of physical
unclonability. When compared to arbiter PUFs, we have
reduced LUT cost by 30.1× and reduced power by 16.9×.

When compared to four independent 64-bit leap-forward
LFSRs and eight 64-bit arbiter PUFs that do not share hard-
ware as shown in the last column of Table 2, our design also
does better in terms of both area and power.

Our design LFSR PUF Non-share
Throughput 256+8 256 256 256+8
Flip-flops 532 256 512 320
LUTs 544 250 16,384 764
Slices 288 135 8192 402
Unclonable yes no yes -
Power(mW) 6.92 3.39 117 7.38
Power/bit 0.026 0.013 0.457 0.028

Table 2: FPGA resource and power characteristics:
our design (four 64-bit leap forward LFSRs loaded
on eight 64-bit arbiter PUFs) vs. four standalone 64-
bit leap forward LFSRs vs. 256 64-bit arbiter PUFs
vs. four 64-bit leap forward LFSR and eight 64-bit
arbiter PUFs that do not share hardware resources.
Power per bit unit: mW/bit.

The result shows our design use more flip-flops compared
to the non-sharing scheme. This is due to the fact in order
to capture the digital information on the racing signals, we
use additional flip-flops for signal encoding. However, we are
able to save 40.4% of LUTs and 39.58% of occupied slices.
Considering flip-flops are much smaller than LUTs in size
on FPGA, we claim our design improves in terms of area.

As of power consumption, our sharing scheme reduces
overall power consumption and power per bit by 7.69% com-
paring to the non-sharing scheme. This number is relatively
small considering the large area improvement. This is caused
by the larger number of flip-flops used in the implementa-
tion. Flip-flops tend to dissipate more switching power than
LUTs while in our sharing scheme the majority of shared
hardware resources are LUTs.

7.2 Randomness
We quantify the statistical randomness of our design by

applying the industry-standard National Institute of Stan-
dards and Technology (NIST) Statistical Test Suite to post-
processed outputs [14]. An output stream is generated in
such a way that the output of the system in the current
clock cycle is fed back to the design as a challenge in the
next clock cycle. We repeat this stream production process
until all output bits (1, 000 × 10, 000) are collected. Figure
5 displays the lowest success ratio of outputs generated by
leap forward LFSRs, arbiter PUFs with Von Neumann cor-
rection, and our design. Three conclusions can be drawn
from the figure:

• The output of our design shows excellent randomness,
passing all tests in the test suite.

Figure 5: NIST Statistical Test Suite success ratio,
one thousand 10,000 bit-streams are passed to each
test. The test passes for p-value ≥ σ, where σ is
0.05. The black line indicates a threshold of success
ratio of 96%. All test results below this line are
considered test failure. Arbiter PUF results without
Von Neumann correction have success rate below
5% in most tests, thus are not shown in the figure.

• Our results is at least as random as leap-forward LF-
SRs.

• Our results outperform arbiter PUF and Von Neu-
mann correction in block frequency and approximate
entropy. In all, our proposed method provides better
randomness while maintaining physical unclonability.

8. CONCLUSION
We propose a mechanism to combine signal racing and

logic computation through signal and hardware sharing. Em-
ploying such a mechanism greatly reduces the area overhead
and power consumption. We illustrate our idea by combin-
ing leap-forward LFSRs and arbiter PUFs on a Spartan-6
FPGA. The evaluation shows that our sharing design saves
40.4% LUTs while achieving 7.69% of power improvement
compared to the non-sharing scheme. Our design main-
tains the physical unclonability inherited from arbiter PUFs
while, as suggested by NIST statistical test suite, achiev-
ing much better randomness. We conclude that by racing
signals and computing logical operations simultaneously, we
are able to create a power- and area-efficient PUF design
with unclonability and high randomness.

9. ACKNOWLEDGMENT
This work was supported in part by the NSF under Award

CNS-0958369, and Award CNS-1059435.

10. REFERENCES
[1] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil

Gershenfeld. Physical one-way functions. Science,
297(5589):2026–2030, 2002.

[2] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and
Srinivas Devadas. Silicon physical random functions.
In Proceedings of the 9th ACM conference on
Computer and communications security, pages
148–160. ACM, 2002.

[3] G Edward Suh and Srinivas Devadas. Physical
unclonable functions for device authentication and
secret key generation. In Proceedings of the 44th
annual Design Automation Conference, pages 9–14.
ACM, 2007.

[4] Jorge Guajardo, Sandeep S Kumar, Geert-Jan
Schrijen, and Pim Tuyls. FPGA intrinsic PUFs and
their use for IP protection. Springer, 2007.

[5] Sandeep S Kumar, Jorge Guajardo, Roel Maes,
Geert-Jan Schrijen, and Pim Tuyls. The butterfly PUF
protecting IP on every FPGA. In Hardware-Oriented
Security and Trust, 2008. HOST 2008. IEEE
International Workshop on, pages 67–70. IEEE, 2008.

[6] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas
Devadas. FPGA PUF using programmable delay lines.
In Information Forensics and Security (WIFS), 2010
IEEE International Workshop on, pages 1–6. IEEE,
2010.

[7] Leonid Bolotnyy and Gabriel Robins. Physically
unclonable function-based security and privacy in
RFID systems. In Pervasive Computing and
Communications, 2007. PerCom’07. Fifth Annual
IEEE International Conference on, pages 211–220.
IEEE, 2007.

[8] Ulrich Rührmair. SIMPL Systems: On a Public Key
Variant of Physical Unclonable Functions. IACR
Cryptology ePrint Archive, 2009:255, 2009.

[9] Teng Xu, Hongxiang Gu, and Miodrag Potkonjak.
Data protection using recursive inverse function. In
Field Programmable Logic and Applications (FPL),
2015 25th International Conference on, pages 1–4.
IEEE, 2015.

[10] Teng Xu and Miodrag Potkonjak. The digital
bidirectional function as a hardware security
primitive: Architecture and applications. In Low
Power Electronics and Design (ISLPED), 2015
IEEE/ACM International Symposium on, pages
335–340. IEEE, 2015.

[11] Frederick James. A review of pseudorandom number
generators. Computer Physics Communications,
60(3):329–344, 1990.

[12] Charles W O’Donnell, G Edward Suh, and Srinivas
Devadas. PUF-based random number generation. In
MIT CSAIL CSG Technical Memo, 481, 2004.

[13] Pong P Chu and Robert E Jones. Design techniques of
FPGA based random number generator. In Military
and Aerospace Applications of Programmable Devices
and Technologies Conference, volume 1, pages 28–30.
Citeseer, 1999.

[14] Andrew Rukhin, Juan Soto, James Nechvatal, Miles
Smid, and Elaine Barker. A statistical test suite for
random and pseudorandom number generators for
cryptographic applications. Technical report, DTIC
Document, 2001.

