
Efficient Image Sensor Subsampling for DNN-Based
Image Classification

ABSTRACT
Today’s mobile devices are equipped with cameras capable of tak-
ing very high-resolution pictures. For computer vision tasks which
require relatively low resolution, such as image classification, sub-
sampling is desired to reduce the unnecessary power consumption
of the image sensor. In this paper, we study the relationship be-
tween subsampling and the performance degradation of image clas-
sifiers that are based on deep neural networks (DNNs). We empir-
ically show that subsampling with the same step size leads to very
similar accuracy changes for different classifiers. In particular, we
could achieve over 15× energy savings just by subsampling while
suffering almost no accuracy lost. For even better energy accuracy
trade-offs, we propose AdaSkip, where the row sampling resolution
is adaptively changed based on the image gradient. We implement
AdaSkip on an FPGA and report its energy consumption.

1. INTRODUCTION
High-resolution cameras are prevalent on today’s mobile devices.

Apple’s iPhone X is equipped with a 12-megapixel camera [1] and
the latest Sony Xperia XZ has a dazzling 23-megapixel camera [2].
While the increasing consumer demand for high-quality photogra-
phy justifies the need for a high-resolution camera, image sensors
with over 10 million pixels are usually an overkill for many com-
puter vision tasks. Take image classification as an example. For the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[3], a popular 1000-class classification competition, competitors
usually resize input images to 224×224. For simpler problems,
such as the CIFAR-10 10-class classification problem [4], state-of-
the-art classifiers achieve over 95% accuracy with input images of
size 32×32. As the amount of computation required for a convo-
lutional neural network (CNN) will roughly quadruple if the input
image doubles its height and width, it is likely that the input sizes
of classifiers will be kept as small as possible. That being said, a
5500×4200 image produced by a 23-megapixel appears dispropor-
tionately big compared to what we need today for common com-
puter vision tasks.

The question then becomes how do we obtain images a with
relatively low resolution from these over-sized image sensors. A

Submitted to ISLPED 2018

straightforward way to obtain a is to take the full image and re-
sample using bilinear kernels to create a smooth downsized image.
However, energy-wise it is not the best solution. There exists an
approximately linear relationship between the energy consumption
of the image sensor and the number of pixels it samples [5]. As a
result, it is desired to sample as few pixels as possible. But how
much should we subsample? If we undersample, the aliasing ef-
fect causes distortions that might lead to degraded performances of
the computer vision algorithms. If we oversample, we risk wasting
energy by sampling unnecessary pixels. It is an important ques-
tion to hardware and system designers, as it mandates the type of
features and APIs that are exposed to application developers. It is
also an important question to computer vision app developers, as
its answer instructs them on how best to utilize the camera for the
overall energy efficiency of mobile computer vision systems.

To bridge the gap between image sensor hardware and DNN-
based image classification algorithms, we analyze the cause of er-
rors when we subsample and propose clear and practical strategies
to improve it. In particular, we show that subsampling, when done
right, does bring about tremendous energy saving with negligible
loss of accuracy. We do not intend to provide an exact answer to
how much we should subsample. Instead, we show that by study-
ing the performance degradation of just a few classifiers with sub-
sampled input images, we can get a reasonable estimate of the per-
formance degradation of image classification in general. To fur-
ther reduce the energy consumption of the image sensor, we pro-
pose a minimal hardware modification to off-the-shelf image sen-
sors. AdaSkip, the proposed enhancement, adaptively subsamples
parts of the image based on the complexity. We show that the pro-
posed method can achieve even better energy accuracy trade-offs
than plain subsampling.

The contribution of this paper is neither proposing new image
sensor architecture nor building more efficient computer vision al-
gorithms. Rather, we take existing and widely-used designs from
both sides and optimize from a system’s perspective. To the best
of our knowledge, we are the first to a) systematically study the
relationship between subsampling and performance degradation of
DNN-based image classification; b) propose a low-footprint hard-
ware extension to off-the-shelf CMOS image sensors for more ef-
ficient subsampling in the context of efficient image classification.

We organize the rest of the paper as follows. Section 2 intro-
duces prior art from the images sensor and deep DNN optimization
communities. Section 3 briefly describes the operation of CMOS
image sensors and our energy model. Section 4 analyzes the neg-
ative effect subsampling has on DNNs and motivates the problem.
Section 5 details both of our proposed methods. Section 7 evaluates
the effectiveness of our methods.



E R

E R

E R

E R

Row #1

Row #2

Row #3

Row #H

... ...

Exposure

Readout

Time

Figure 1: CMOS image sensor operation with rolling shutter.

2. RELATED WORK
CMOS Image Sensors. It is well known that the analog read-

out chain consumes a significant amount of power. Thus there has
been a continuous effort in creating specialized image sensors that
take reduced amount of sampling. Notable approaches include the
use of DCT proposed by Kawahito et al. [6], predictive coding
proposed by Leon-Salas et al. [7], Quadtree Decomposition algo-
rithm proposed by Artyomov et al. [8], and compressive sensing
proposed by Oike et al.[9]. Kemeny et al. also proposed an im-
age sensor that allows programmable readout of pixels at arbitrary
locations and various resolutions [10].

LiKamwa et al. studied the energy proportionality of off-the-
shelf image sensors and proposed optimization strategies for simple
computer vision tasks [5].

In all of the cases above, the primary constraint is image quality.
In our work, however, we look at the effect of subsampling on the
particular task of image classification. For the hardware portion
of our contribution, instead of trying to derive an ad-hoc image
sensor architecture, we base our techniques solely on subsampling
by skipping pixels, a feature that is widely available on today’s
mobile image sensors.

Neural Network Design. DNNs are extremely power hungry.
The quadratic relationship between computation and input size plays
a critical role in optimizing the power consumption of DNNs. Huang
et al. proposes the multi-scale DenseNet architecture, where the
model dynamically adopts early size-reducing pooling layers for
easier inputs [11].

Other researchers have also proposed to reduce the computation
of neural networks by using different image sensor designs. Chen
et al. have proposed to approximate the first layer of CNNs using
image sensors with angle sensitive pixels [12]. LiKamwa et al.
proposed to move early layers in CNNs to the analog domain to
save energy.

In comparison to the designs mentioned above, our work targets
a broader audience. We base our experiments on generic neural
network models. And the main target of our study is how the most
widely used image sensor architecture could best be utilized in or-
der to serve need of neural networks.

3. CMOS IMAGE SENSORS
In this section, we describe the architecture and operation of the

most commonly used mobile CMOS image sensors. We then de-
scribe the model based on previous energy characterizations of off-
the-shelf units [5].

3.1 Architecture and Operation
Today’s mobile CMOS image sensors usually consist of pixel

arrays, an analog signal chain and various digital processing and
I/O logic. The analog chain contains ADCs, amplifiers, and bias

adjusting circuits and it is known to be the major source of power
consumption. A common design choice for image sensors is to use
column-parallel readout, where one pixel column share one signal
chain. In this architecture, the pixels are usually read out row by
row.

Rolling electronic shutters are widely used to control the expo-
sure. During the operation of a rolling shutter, only one row or
column of pixels read out at a time. The operation fits nicely with
the column-parallel readout architecture. When one row finished
exposure, the readout logic starts the processing of that row. At the
same time, the subsequent row is in the process of exposure, wait-
ing for its turn for pixel readout. The whole process is depicted in
Figure 1.

There are usually two supported modes of subsampling: skipping
and binning. In skipping mode, the sensor skips the entire pixel
readout chain of pixels at certain locations. In binning mode, pixel
values are averaged before output. We mainly consider the skipping
mode, since it is the mode that enables the most energy savings.

3.2 Energy Model
We mainly use LiKamWa et al.’s energy characterization on com-

mercial image sensors[5]. They proposed to estimate the energy
consumption of image sensors using the following equation:

E = Pidletidle + Pactivetactive

Pidle and tidle represents the power and time when no pixel read-
out is occurring, i.e. when the first row is going through expo-
sure. Once the pixel readout starts, the system switches to the active
mode with higher power consumption. The length of the readout
tactive is linear to the number of pixels sampled.

4. PROBLEMS WITH SUBSAMPLING
Given a neural network that requires inputs of size H ×W , it is

most desirable if we directly subsample the pixel arrays to create
an H ×W image. However, images naturally contain a variety of
high-frequency components its original form. Subsampling images
can easily give rise to strong aliasing effect.

Neural networks have very unpredictable behaviors when they
encounter input data derived from distributions that are different
from what they are trained on. Goodfellow et al. demonstrated
that extremely small modifications in the directions to increase the
loss can effectively fool neural networks [13]. From the neural net-
works’ perspective, the process of subsampling creates input data
of a slightly different distribution. It is thus likely that neural net-
works do not behave correctly in these situations.

Table 1: Effects of direct subsampling on 10-class classifiers
with different input sizes

Subsampling method Accuracy loss (%)
32× 32, Direct subsampling -48.6 ± 6.4

32× 32, Smoothed (radius=0.3) -36.6 ± 5.9
32× 32, Smoothed (radius=0.65 ) -9.3 ± 1.3
32× 32, Smoothed (radius=0.9 ) -50.2 ± 5.8

64× 64, Direct subsampling -31.7 ± 8.3
64× 64, Smoothed (radius=0.55) -6.1 ± 1.3

To verify our conjecture, we tested direct subsampling on 10-
class image classifiers with two different input sizes. Section 6
explains the experimental setup in more details. To create an image
of the target input size, we directly subsample (by skipping pixels)
from a 512 × 512 image. Then we feed it to 10 different clas-
sifiers, with classification accuracies averaging 86.9% and 90.6%



for 32 × 32 and 64 × 64 classifiers respectively. Fearing that the
extreme variation in neighboring pixels might be adversely affect-
ing the performance of the classifiers, we further added a low pass
Gaussian filter to smooth out the images. We used binary search
to find a radius that performs relatively well. Table 1 shows the
mean accuracies and corresponding 95% confidence intervals. We
observe substantial accuracy drop when direct subsampling is ap-
plied. Smoothing helps, but in the best case, we still see an average
of 9.3% accuracy drop for 32 × 32 classifiers and 6.1% accuracy
drop for 64× 64 classifiers.

(a) (b)

(c) (d)

Figure 2: Errors caused by subsampling. (a) The original im-
age of a bus; (b) 32×32 resampled image using bilinear kernel;
(c) visualized source of error I in channel “R”. Red dots are pix-
els that increase loss, and blue dots are those that decrease loss.
The less transparent the color, the larger impact a pixel has; (d)
32× 32 smoothed subsampled image.

To further study reasons behind the misclassifications, we study
the effect each pixel has on the final loss function. To quantify the
effect, we define the following measurement given loss function
L, bilinearly resampled image X and smoothed subsampled image
X′:

I =
∂L

∂X′ � (X′ −X)

∂L
∂X′ represents how sensitive the loss function to the change of
individual pixel. It could be positive or negative, where increas-
ing pixel value causes loss increase or decrease, respectively. � is
the Hadamard (element-wise) product. (X′ − X) represents the
change from the standard image to the subsampled. Intuitively,
large changes in the sensitive pixels will inflate the loss and cause
the classifier to misclassify.

We studied many misclassified samples and selected an example
image of a bus as shown in Figure 2. Although area inside the
windowshield in the subsampled image appears somewhat jagged,
it is not contributing much in terms of error. It is the edge the
windshield, where the color abruptly changes, that is contributing
the most to the classification error. Apparently failing to sample
the right color during subsampling distorted the appearance of the

window frame and caused the classifier to misclassify. Above is a
typical example where smoothing cannot recover the information
lost during subsampling. The only way to mitigate the problem is
to sample at a higher resolution to include more information.

REMARK 1. Subsampling may distort key features that image
classifiers use, causing unrecoverable classification performance
degradation.

As a side note, if there exists a classifier that is trained on di-
rectly subsampled images, then the problem of subsampling be-
comes trivial. However, to our knowledge, all of today’s classifiers
are trained on smooth images that are interpolated at least linearly
when downsizing from a full resolution image. In addition, we car-
ried out some classification experiments with bilinearly downsized
and directly subsampled images. It appears that because of the sub-
stantial aliasing effect present among directly subsampled images,
classifiers trained on those appear to overfit easily and do not per-
form as well. Further, from a system’s perspective, we should not
make any assumptions about the image classifiers. We thus restrict
our discussion in the general case where the classifier is trained on
images bilinearly resampled from full-resolution ones, while we
tried to supply the classifier with subsampled image and maintain
its performance.

5. PROPOSED METHOD
To avoid confusion, we are going to use the term "two-step sub-

sampling" to describe the process of subsampling to create input
images of specific sizes for a classifier. We formally define this pro-
cess in the next subsection. Following the definition, we described
our proposed adaptive sampling strategy, AdaSkip. For AdaSkip
requires minimal hardware support. We discuss an alternative hard-
ware design in the last subsection.

5.1 Two-Step Subsampling
Let Ho ×Wo be the resolution of the image sensor. The image

sensor also supports a list of K subsampling steps, S = {s1, s2, . . . ,
sK}, where si represents the number of pixels among which one is
sampled. We use subsample(X, s) to represent the process of
sampling with step s, both horizontally and vertically. X is of size
Ho ×Wo, so the resulting image is of size Ho

s
× Wo

s
. Instead of

of subsampling the whole image X, we use the same expression to
represent the subsampling of one row x, subsample(x, s).

To subsample to create images of specific size Ht × Hw, we
first command the image sensor to subsample with step s, where
Ho
s

> Ht,
Wo
s

> Wt. Then, taking the output from the sen-
sor, we apply resampling (in software) using kernel function f
resample(x, f) to create image of the target size. Typical ker-
nel function include bilinear, Bell, Bicubic, etc. We use bilinear
kernel in our experiments. The procedure is described in Algorithm
1.

Algorithm 1 Two-Step Subsampling
Input: X, the original image, of size Ho × Wo; s, subsampling
step size; f , the kernel used in software resampling.
Output: X′, the image of desired size Ht ×Wt

1: X′ ← subsample(X, s) . Hardware subsampling
2: X′ ← resample(X′, f) . Software resampling
3: return X′



5.2 AdaSkip
Since undersampling distorts essential image features, we should

sample at a rate that is high enough to keep the features in tact.
However, not all parts of the image need a high sampling rate. It’s
more desirable to adaptively change the rate of sampling. The pro-
cess of progressive exposure and readout in rolling shutters creates
slacks after each row. We could use the slacks for making deci-
sions on the step size used for the subsequent rows, based on the
information that we obtain from the current row. Using this infor-
mation, we could speculate on whether to sample them using high
resolution or low resolution. With the varying granularity within
one frame, the resulting image will look very undesirable aesthet-
ically. However, deep learning algorithm might be able to look at
the resulting image in a different light. Since the process of de-
ciding what resolution to sample is adaptive, we coined the name
AdaSkip, which stands for adaptively skipping rows.

In computer vision, the gradient of an image is a very funda-
mental element in feature engineering. It is usually defined in two
terms, the gradient along the x direction Gx and the gradient along
the y direction Gy .

Gx(X) = |∂X
∂x
|

Gy(X) = |∂X
∂y
|

Image gradients have an extensive range of usages. For one, it
is commonly used as building blocks for edge features. As a di-
rect feature, it is also used to determine the complexity of different
parts of the images in seam carving. As a simple indicator of the
complexity of the images, it is adopted in our algorithm to decide
the sampling resolution. However, since we only have the informa-
tion about the current row sampled, we will only use the gradient
along the x-direction Gx. Algorithm 2 details our approach. We
use Gx(xi) to represent the gradient in the row xi.

Algorithm 2 The AdaSkip algorithm
Input: X, the original image, of size Ho×Wo; sh, sl, the number
of pixels to skip, sh < sl; thd, the threshold to determine which
subsampling mode to use;
Output: X′, the image of desired size Ht ×Wt

1: step← sh
2: Initialize counter
3: for each row x′

i do . The main algorithm in hardware
4: if counter = step then . Sample and decide resolution
5: xi

′ ← subsample(xi, step)
6: counter ← 1
7: if max(Gx(xi

′)) > thd then
8: step← sh
9: else

10: step← sl
11: end if
12: else . Skip the row
13: counter ← counter + 1
14: end if
15: end for
16: X′ ← collections of rows xi

17: return X′

The high-level idea of the algorithm is extremely straightfor-
ward: use a lower resolution if the current row is not complex,
else use a higher resolution. There are a few details that are not
reflected in the algorithm. First, in order to make sure that the thd

is the same for two resolutions (two rows of different sizes), the
denser row should be subsampled in the calculation of Gx(xi) to
match the sparser one. Second, since the subsampled rows are of
different sizes, eventually they should be unified (as stated in line
16) before further resampled. That could be done by manipulating
the column memories in hardware or using the software.

5.3 AdaSkip Hardware Extension
Since the AdaSkip algorithm varies sampling rate per row, it can

only be implemented as part of the images sensor hardware. The
core logic is relatively simple, and it mainly involves line 7 in Algo-
rithm 2. The calculation of gradient involves adders and converting
two’s complement representations. Comparators are next for find-
ing the maximum value. Both components are already present in
current image sensor design. Adders exist in digital gain adjust-
ment circuits, and comparators in SAR based ADCs. To reduce the
reduce the energy of the design, we could simply lower the preci-
sion of the arithmetic computation.

6. EXPERIMENTAL SETUP

6.1 Dataset
ImageNet is one of the most widely used datasets in image classi-

fication [14]. The subsets that is used for ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) contains 1,461,406 images
from 1000 classes [3]. It contains object classes of very different
nature and granularity, including classes ranging from "warplane"
to a specific dog breed called "Irish water spaniel". All the images
are available in its original JPEG format. The median number of
pixels in the images is around 200,000. Many other datasets exist
in the field of image classification, but they rarely contain images
of the original sizes. Given the popularity, scale and data format,
the ImageNet dataset is the best choice for our experiments.

6.2 Camera Configuration
Due to resolution limitations of the dataset, it is not possible to

conduct experiments to reflect the performance on today’s high res-
olution cameras. We decide to simulate the behavior of an image
sensor with resolution 512 × 512. For subsampling, we assume
that when the supported skip steps are s =1, 2, 4 and 8. We as-
sume images are taken in the outdoor condition, with relatively less
exposure time and thus less tidle. In this case, the majority power
consumption occurs during the active mode.

6.3 Image Classifiers

Table 2: Classifiers used in our experiments
Input size # Classes Quantity Accuracy (%)
32× 32 10 10 86.9 ± 3.3
32× 32 20 10 81.1 ± 2.0
32× 32 30 5 78.9 ± 2.3
48× 48 10 10 87.3 ± 4.2
48× 48 20 5 86.0 ± 3.3
48× 48 30 5 84.9 ± 2.7
64× 64 10 10 90.6 ± 2.1
64× 64 20 5 88.0 ± 3.5

To reenact a reasonable ratio between the image sensor reso-
lution and classifier input size, we experiment on classifiers with
32× 32, 48× 48, and 64× 64 input images. We randomly sample
10, 20 or 30 classes from the 1000 classes, and train 5 or 10 clas-
sifiers to form the population of classifiers with the corresponding



configuration 1. All of the classifiers use the ResNet34 architecture
[15], trained with over 150 epochs. We use SGD with a momen-
tum of 0.9. The learning rate starts at 0.1 and is reduced to 1/10
the value every 50 epochs. Table 2 lists the classifiers that we used.
In our experiments, we observed that some of the test images pro-
duce low confidence scores. In those cases, a small change in the
input may trigger an arbitrary change in the prediction. We filter
out those images with original confidence score below 0.8 when
we compare different subsampling methods.

The randomly sampled classes have varying levels semantic sim-
ilarities. Deng et al. showed, quite intuitively, that classes of closer
semantic meanings are harder to distinguish [16]. Our experiments
confirmed the observation. Take the 32×32, 10-class classifiers as
an example. The worst performing classifier with only 80.2% accu-
racy tries to classify, among other classes, three types of amphib-
ians: tailed frog, common iguana and whiptail. The
best performing classifier achieves 92.2% accuracy on classes that
are relatively disparate in meanings. Using these classifiers of very
different nature as well as using different input sizes are all parts of
our efforts to make our conclusions more generalizable.

7. EVALUATION
We start the evaluation by presenting the performance charac-

teristics of all our classifiers when two-step subsampling is used.
Next, we demonstrate the AdaSkip algorithm by first visualizing
it, and then show its performance of it with respect to energy and
accuracy.

7.1 Two-Step Subsampling

Table 3: Accuracy loss caused by two-step subsampling with
different step sizes on different classifiers

Classifier

Energy savings
(step) 56.0×

(s = 8)
15.5×
(s = 4)

3.97×
(s = 2)

32× 32, 10-class −1.6± 0.6 −0.1± 0.2 0
32× 32, 20-class −1.3± 0.4 −0.1± 0.1 0
32× 32, 30-class −2.7± 0.4 −0.0± 0.2 0
48× 48, 10-class −3.0± 0.9 −0.4± 0.3 0.0± 0.1
48× 48, 20-class −4.4± 1.8 −0.2± 0.1 0
48× 48, 30-class −4.1± 0.7 −0.4± 0.3 0
64× 64, 10-class −30.5± 9.0 −0.2± 0.2 0
64× 64, 20-class −36.5± 9.5 −0.4± 0.5 0

Table 3 shows the accuracy loss using different steps s for sub-
sampling. Different columns represent different step sizes and on
the top row we also showed the relative energy savings. The gray
areas represent cases where after subsampling, the image is less
than twice (in both width and height) the size of the required input.
Comparing to Table 1, even just doubling the sampling rate sub-
stantially reduces the accuracy loss. Further, we observe that the
accuracy loss is correlated much more with the step size than with
what classifier it is. It appears that as long it is at least 2× larger
than the target resolution of the classifiers, the same resolution after
subsampling causes similar accuracy loss to all classifiers. These
findings echo with the analysis from Section 4, where we argue
that information loss at the subsampling step plays a crucial role in
determining the performance degradation of image classifiers.

1Due to the time limit, we were not able to 30-class 64 × 64 clas-
sifiers

This characteristic has an interesting implication for system de-
signers. Given a subsampling step size s, one could estimate the
accuracy loss of potentially all classifiers using just a few of them.
Based on this characteristics, hardware providers, for example, could
present guidelines to app developers on the best subsampling strat-
egy to use for different target image sizes needed by classifiers.

REMARK 2. Regardless of what classifier it is, the performance
degradation of a classifier given subsampled input images is largely
decided by the subsampling step size.

7.2 AdaSkip Subsampling

7.2.1 Visualization

(a) (b)

(c) (d)

Figure 3: Visualizing AdaSkip-based subsampling. (a) The
original 512 × 512 image; (b) the output of the AdaSkip algo-
rithm, where the greyscale parts are rows sampled with sl = 8
and the colored part are rows sampled with sh = 4; (c) 32× 32
output images from two-step subsampling with s = 4 and bi-
linear resampling; (d) 32 × 32 images obtained by bilinear re-
sampling the output in (b).

Figure 3 visualizes the simulated subsampling procedure of the
AdaSkip algorithm. The image belongs to the class black stork.
For AdaSkip, we set the threshold for switching between the higher
resolution sh = 4 (equivalent to resolution 128 × 128), the lower
resolution sl = 8 (equivalent to resolution 64 × 64), and thresh-
old to 96. To visualize the effect of using different subsampling
resolutions, we resort to using grayscale and colored parts. As a
result, as shown in Figure 3(b), a few rows on the top depicting
grass and roughly the entire lower half are sampled using the lower
resolution. Figure 3(c) depicts the output image from a two-step
subsampling procedure. The first step is the hardware subsampling
with s = 4 (resulting in a 128×128 image), and the second step is
software bilinear resampling. Figure 3(c) shows the results from bi-
linear resampling the image in 3(b). Comparing 3(d) with 3(c), we
barely see any difference. The resulting image is indeed correctly
classified by the classifier.



7.2.2 Hardware Energy Consumption
We assume our hardware support is an auxiliary to an existing

image sensor. Therefore our estimated power consumption is the
upper bound of the additional power required to perform AdaSkip.
Our implementation on a Spartan-6 LX45 field-progrmmable-gate-
array (FPGA) shows the power overhead of the 128-pixel (sl = 4)
AdaSkip hardware support is approximately 13.5 mW. We claim
that this overhead can be significantly reduced if AdaSkip hardware
support is implemented on ASIC or co-optimized with the image
sensor. Kuon et al. estimate the power gap between ASIC and
FPGA implementations of logic only designs could be as large as
5.7×−52× [17]. We estimate the power consumption of AdaSkip
hardware support to be 2.4 mW or lower on ASIC, indicating less
than 1% additional power in our energy model comparing to an im-
age sensor without AdaSkip. In an actual image sensor, we argue
that there is no need for more than 600-pixel AdaSkip support, as
rarely will a classification problem needs that large of a resolution.
Without considering the possibility of using memory and serializ-
ing, that amounts to less than 5% of additional power. We use that
as the overhead in the following discussion of energy.

7.2.3 Energy Accuracy Trade-Off

40x 13x
Energy savings

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

Ac
cu

ra
cy

 c
ha

ng
e 

(%
)

TwoStep
AdaSkip

(a)

10x 5x
Energy savings

0.6

0.4

0.2

0.0

Ac
cu

ra
cy

 c
ha

ng
e 

(%
)

TwoStep
AdaSkip

(b)

Figure 4: Energy accuracy trade-offs using AdaSkip. (a) 32 ×
32 classifiers with sl = 8, sh = 4; (b) 48 × 48 classifiers with
sl = 4, sh = 2

Simply by two-step subsampling, we already saved significant
amount of energy. To take a step further, we apply AdaSkip in this
setting. Figure 4 shows the accuracy changes using different thresh-
olds in AdaSkip. In the figure, the y-axis is the accuracy change,
and the x-axis is the relative energy consumption. Blue dots repre-
sent the results from AdaSkip, where each point represents a thresh-
old (multiples of 32). Red square represents the baselines using
two-step subsampling for sl (left) and sh(right) respectively.

When the threshold is 0, AdaSkip degrades to two-step but with
additional hardware overhead, thus falls below the baseline. How-
ever, for almost all the other points, AdaSkip constantly achieve
better energy accuracy trade-offs. In the case of Figure 4(b), sam-
pling at s = 2 sustained an average of 0 accuracy lost. That is
equivalent to 4× energy savings. Using AdaSkip, we can boost the
energy savings to around 7× without losing any accuracy.

8. CONCLUSION
We present a study on how subsampling affects the performance

of DNN-based image classifiers. We first demonstrate that one
could achieve over 15× energy savings just by subsampling while
suffering almost no accuracy lost. Then we empirically show that
the accuracy lost can be predicted as an approximate function of

subsampling step size, regardless of what classifier it is. To achieve
better accuracy when subsampling aggressively, we propose the
AdaSkip algorithm. We implement AdaSkip on an FPGA and esti-
mate that the overhead in a real image sensor to be less than 5%.

9. REFERENCES
[1] “iPhone X - technical specifications.”

https://www.apple.com/iphone-x/specs/. Accessed:
2018-03-01.

[2] “XperiaTMXZ specifications - Sony mobile.”
https://www.sonymobile.com/us/products/phones/xperia-xz/
specifications/. Accessed: 2018-03-01.

[3] O. Russakovsky and et al., “Imagenet large scale visual
recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[4] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

[5] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and
P. Bahl, “Energy characterization and optimization of image
sensing toward continuous mobile vision,” in MobiSys,
pp. 69–82, 2013.

[6] S. Kawahito, M. Yoshida, M. Sasaki, K. Umehara,
D. Miyazaki, Y. Tadokoro, K. Murata, S. Doushou, and
A. Matsuzawa, “A cmos image sensor with analog
two-dimensional dct-based compression circuits for one-chip
cameras,” J. Solid-State Circuits, vol. 32, no. 12,
pp. 2030–2041, 1997.

[7] W. D. Leon-Salas, S. Balkir, K. Sayood, M. W. Hoffman, and
N. Schemm, “A CMOS imager with focal plane
compression,” in ISCAS, 2006.

[8] E. Artyomov and O. Yadid-Pecht, “Adaptive
multiple-resolution CMOS active pixel sensor,” IEEE Trans.
Circuits Syst., vol. 53-I, no. 10, pp. 2178–2186, 2006.

[9] Y. Oike and A. E. Gamal, “CMOS image sensor with
per-column Σ∆ ADC and programmable compressed
sensing,” J. Solid-State Circuits, vol. 48, no. 1, pp. 318–328,
2013.

[10] S. E. Kemeny, R. Panicacci, B. Pain, L. H. Matthies, and
E. R. Fossum, “Multiresolution image sensor,” IEEE Trans.
Circuits Syst. Video Techn., vol. 7, no. 4, pp. 575–583, 1997.

[11] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and
K. Q. Weinberger, “Multi-scale dense convolutional
networks for efficient prediction,” in ICLR, 2018.

[12] H. G. Chen, S. Jayasuriya, J. Yang, J. Stephen,
S. Sivaramakrishnan, A. Veeraraghavan, and A. C. Molnar,
“ASP vision: Optically computing the first layer of
convolutional neural networks using angle sensitive pixels,”
in CVPR, pp. 903–912, 2016.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in ICLR, 2015.

[14] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li,
“Imagenet: A large-scale hierarchical image database,” in
CVPR, pp. 248–255, 2009.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, pp. 770–778, 2016.

[16] J. Deng, A. C. Berg, K. Li, and F. Li, “What does classifying
more than 10, 000 image categories tell us?,” in ECCV,
pp. 71–84, 2010.

[17] I. Kuon and J. Rose, “Measuring the gap between fpgas and
asics,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 203–215, 2007.


