
An Ultra-Low Energy PUF Matching Security
Platform Using Programmable Delay Lines

Teng Xu, Hongxiang Gu, Miodrag Potkonjak

Computer Science Department

University of California, Los Angeles

{xuteng, hxgu, miodrag}@cs.ucla.edu

Abstract—We have proposed a new security platform: physical
unclonable function (PUF) matching using programmable delay
lines (PDL). Our platform inherits good security properties of
standard PUFs, such as low energy, low delay, and unclonability.
However, standard PUF-based security protocols induce high
computational resources of at least one involved party. To resolve
this issue, we take advantage of PDL technology to match
standard PUFs in such a way that two PUFs have the same
challenge response mapping function. The matched pair of PUFs
enables a majority of protocols to be executed in an ultra low
energy, low latency manner for all the involved parties.

I. INTRODUCTION

The growing number of mobile devices have imposed

new security requirements. Most mobile devices are highly

constrained by their battery life, thus they require embedded

security platforms to be ultra low energy. On the other hand,

current trend shows the state of the art mobile devices are

much thinner and smaller in size to achieve higher portability.

Thus, area overhead becomes especially important. Therefore,

when protecting mobile electronics using security platforms,

it is crucial to ensure that the design is ultra-low power and

compact in size.

The physical unclonable function (PUF) as a hardware

security primitive meets the above requirements. A PUF

is a hardware implemented one-way function which takes

advantage of the effect of process variation to guarantee

the uniqueness of each individual piece. The input-output

mapping function of an individual PUF is deterministic, but

unpredictable due to the fact that process variation is not

predictable. As a hardware security primitive, PUF employs

much lower overhead comparing to traditional cryptographic

approaches. More importantly, a PUF itself is unclonable

which physically provides one more level of protection.

PUFs enable a variety of security protocols, such as message

encryption/decryption, authentication, and public key com-

munication. Unfortunately, a PUF has its own shortcomings

when applied in protocols. It is because such protocols usually

require at least two parties to share the same input-output

mapping function. However, a PUF can not be copied due

to its unclonability, consequently, one of the parties can only

simulate the mapping function which is significantly slower

and takes more energy comparing to directly using the PUF

device.

Our technical goal is to demonstrate a new platform for

PUF matching to resolve the above issues of standard PUFs.

It preserves all advantages of traditional PUFs but allows all

parties in the protocol to employ low-cost communication. The

key idea is to match multiple standard PUFs in such a way

that they have the same input-output mapping function. We

achieve our goal by using the look-up table (LUT) based PDL.

The PDL are applied to tune and modify the delays of each

segment in the standard PUFs, and eventually in hope to create

multiple PUFs with the same functionality. The generated

matched PUFs preserve all properties of standard PUFs, and

the probability of a third party creating a same copy of the

PUF must be negligible. By creating a set of PUFs that are

matched to each other, each party is able to possess one PUF

copy from the set, thus facilitating low-cost communication.

In this paper, we first review the related literature of

PUFs and PDL. Then we give the preliminaries of the basic

PUF model we are using as well as the design of PDL on

field-programmable gate array (FPGA). We also provide a

motivational example of our PUF matching scheme. Later we

demonstrate in detail on the architecture of our system, PUF

matching algorithm, and the protocols that can be enabled by

our security platform in the subsequent sections. Lastly, we

depict our implementation detail and present the tested results.

II. RELATED WORK

We review the previous literatures on process variation,

PUFs, PDL, and lightweight security primitives in this section.

A. Process Variation

Process variation is a widely recognized phenomenon in

modern CMOS technologies [1]. PV exists among gates or

transistors when the components are designed to be identical.

But due to manufacturing limitations, the real produced com-

ponents are different and unique in terms of structural and

operational properties, such as propagation delay and leakage

power. Many factors can cause PV, including wafer lattice

structure imperfections, non-uniform dopant distribution, mask

alignment, and chemical polishing.

B. Physical Unclonebale Function (PUF)

PUF is first proposed by Pappu et al. using mesoscopic

optical systems [2]. Devadas et al. from MIT developed the

first silicon PUFs through the use of intrinsic process variation978-1-5090-2520-6/16/$31.00 c©2016 IEEE

in deep submicron integrated circuits [3]. A variety of other

types of PUFs are proposed afterwards, including arbiter

PUFs [3], ring oscillator PUFs [4], SRAM PUFs [5], butterfly

PUFs [6], and digital PUF [7][8]. All of the above PUFs

are designed by utilizing the effect of process variation on

different platforms.
Numerous traditional protocols can be interpreted using

PUFs, ranging from the traditional security key communi-

cation and authentication [9] to more sophisticated public

key communication [10]. The key idea is to employ the

high unpredictability of PUF responses to secure the in-

formation. However, conventionally only one party has the

actual hardware of PUF (e.g., decryption party). Thus, all the

rest communication parties can only simulate the PUF (e.g.,

encryption party), which takes relatively high timing/energy

overhead comparing to directly using the PUF hardware. Our

new proposed PUF matching platform can leverage the above

drawbacks.

C. Programmable Delay Lines (PDL)

Programmable delay lines are a series of digital delay lines

with electrically programmable and trimmable delay times

[11]. The design of PDL implemented on FPGA is proposed

by Majzoobi et al [12]. They take advantage of the lookup

table (LUT) internal structure on FPGA to create delay bias

and use it to generate the controllable delay.
To measure the delay bias, high precision delay testing

technique with pico-second resolution on FPGA is required.

Some previous work includes: Raychowdhury et al. [13]

proposed on-chip delay measurement hardware techniques to

estimate the segment path delay. Tsai et al. [14] proposed a

vernier delay lines based built-In delay measurement circuit

with a small area overhead that can provide high-resolution

delay measurement. Majzoobi et al. [15] designed a timing

characterization circuit with clock synthesis that can measure

pico-second resolution on FPGA.

D. Lightweight Security Primitives

There are a number of lightweight protocols as well as

security primitives proposed. Meanwhile, many of the previous

works also focus on proposing low-power architecture for al-

ready existed cryptographic cyphers, e.g., SHA-1, AES [16]. In

terms of lightweight PUFs, Koushanfar et al. have developed

a new methodology for low-power PUF design which enables

multiple delay lines for response creation [17]. The matched

public PUF (mPPUF), as a new type of low-power PUF, has

been proposed by Meguerdichian et al. which takes advantage

of both process variation and device aging to create pairs of

identical PUFs [18]. More recently, Xu. et al proposed the

digital bidirectional function which works completely in the

digital domain with even lower power consumption compared

to the traditional analog security primitives [19] [20].

III. PRELIMINARIES

A. PUF Model

The PUFs we use for matching are standard arbiter PUFs.

Figure 1 shows the schematic diagram of the PUF model. The

basic structure of the n-bit PUF consists n delay segments. The

two propagation delays in the ith segment are denoted as d0i
and d1i respectively. The two delays are designed notoriously

equal to each other, but after manufacturing, the effect of

process variation will cause unpredictable delay difference

between them. When built on FPGA, the upper delay and

the lower delay in each segment are directly implemented

using the LUTs with the same size. Two identically designed

paths are generated by connecting delay components from

each segment, and an arbiter is at the end of the two paths.

The two paths can be modified using the control bit of each

segment. When the control bit is 0, the two paths will not

shuffle. When the control bit is 1, the two paths swap. For

example, in Figure 1, if the control bit of the ith segment is 0,

then d0i stays with the upper path and d1i stays with the lower

path. However, if the control bit is 1, d0i shuffles to the lower

path and d1i shuffles to the upper path. Note that when the

shuffling happens, all the delays that connect prior to d0i (d1i)

will be shuffled at the same time.

d1
0

d2
0

d2
1d1

1

0

1

0

1

0

1

0

1

0

1

Rising Edge

n-bit challenge:

C1 C2 Cn

0

1

0

1

dn
0

dn
1

Response

A
rb

it
e

r

Fig. 1: The model of delay-based PUF with an n-bit challenge.

The vector consists of all control bits is denoted as the

PUF challenge. When an n-bit challenge (c1c2...cn−1cn) is

provided to the PUF, two identically designed paths are

generated. To retrieve a response, an impulse signal is fed

into the system to excite both paths simultaneously. Because

of process variation, the signal travels along one of the two

paths will reach the arbiter earlier, generating a corresponding

arbiter output denoted as the PUF response. For an n bit PUF,

there exists 2n challenge-response pairs.

B. PDL on FPGA

0

1

0

1

0

1

SRAM

values

A1 A0

O

Fig. 2: The internal structure of a 2-input LUT.

The PDL design on FPGA is proposed by Majzoobi et al

[12]. It is implemented by a single LUT. Figure 2 shows an

example LUT with 2 selection bits A1 and A0. Now consider

two scenarios respectively when A0 = 0 and A0 = 1. The

propagation delay from A1 to O when A0 = 0 is depicted in

the solid red line, and the propagation delay when A0 = 1
is marked in the dashed blue line. From the figure, we can

clearly see that due to the asymmetric structure in the LUT,

the propagation delay in the blue line is slightly larger than the

propagation delay in the red line. Many modern FPGAs have

on board 6 selection-bit LUTs, the delay difference caused by

asymmetricity is in pico-second resolution. We take advantage

of such small delay difference in the arbiter PUF segments to

tune and match the PUFs.

IV. A MOTIVATIONAL EXAMPLE

dA
1 dA

2

dB
1 dB

2

PDL
|dB

1-dA
1|

PDL

|dB
2-dA

2|
PUF 1

PUF 2

Fig. 3: An example of PUF matching using PDL.

We present a motivational example of our PUF matching

scheme in Figure 3. Both PUF 1 and PUF 2 originally have two

segments. In order to match their first segments, respectively

with d1A delay difference in PUF 1 and d1B in PUF 2, we add an

additional segment built by the PDL to PUF 1 with the delay of

|d1B−d1A|. By properly combining the existing first segment in

PUF 1 (d1A) with the additional PDL segment (|d1B−d1A|), they

together can represent the first segment in PUF 2 which has the

delay of d1B . The similar matching process can be repeated on

the second segment of PUF 1 and 2. To summarize, the basic

idea for matching two n− bit PUFs is to create n additional

segments using PDL and attach them by the end of a PUF.

The delays of PDL are designed in such a way that each one

of them can be combined with an existing ith segment in the

current PUF so that they together realizes the same delay as

the ith segment in the other PUF.

V. PUF MATCHING

The goal of PUF matching is to match at least 2 PUFs in

such a way that they all have the same challenge-response

mapping function. The matching process can be divided into

four steps as shown in Figure 4, respectively PUF characteri-

zation, delay information exchange, add extra PDL segments,

and challenge reassignment. We demonstrate each procedure

separately in the following parts. For simplification, we start

with PUF matching between two parties. We assume that Alice

owns an n-bit arbiter PUF A and Bob owns an n-bit arbiter

PUF B. The goal is to match PUF A with PUF B.

PUF Characterization

 Delay Information Exchange

Add Extra PDL Segments

Challenge Reassignment

Fig. 4: The flow of PUF matching.

A. PUF Characterization

It has been well known that standard arbiter PUFs can

be characterized using statistical methods. Many technologies

have been proposed to characterize PUFs. Rührmair et al. de-

veloped numerical modeling attacks combining with machine

learning techniques to break various types of PUFs [21]. Xu et

al. proposed to use statistical models and regression techniques

to retrieve the delay characterization of each segment in

the arbiter PUF [22]. Both PUF characterization approaches

collect a number of CRPs of the PUFs and derive statistical

models from there. To match PUF A with PUF B, the first step

is that Alice and Bob need to characterize PUF respectively.

For the PUF model shown in Figure 1, the ith segment has

two delays, d0i and d1i , we denote the delay difference between

d0i and d1i as d
diff
i as shown in Equation 1.

d
diff
i = d0i − d1i , i ∈ {1, 2, ...n} (1)

Using the notation of d
diff
i , the total delay difference

(Tdiff) between two PUF paths can be represented in Equation

2. The parity function denotes the number of times that

switching happens after the current segment, which is decided

by the number of ones in the challenge. Equation 2 indicates

that the total delay difference of the two PUF paths can be

denoted as the plus or minus of the delay difference of each

segment.

Tdiff =

n
∑

i=1

(−1)parity(i) ∗ ddiffi

parity(i) =

{

0, even 1s in {ci...cn}

1, odd 1s in {ci...cn}

(2)

We rewrite the Equation 2 to Equation 3 using vectors

formats. Note that each challenge corresponds to a unique P

vector which consists of only 1 and -1.

Tdiff = P ·D

P = {(−1)parity(1), (−1)parity(2), ...(−1)parity(n)}

D = {ddiff1 , d
diff
2 , ...ddiffn }

(3)

Using the above arbiter PUF model, the process of PUF

characterization is easily done by collecting a number of

PUF challenge-response pairs, and building a statistical model

based on them. In our characterization, we follow the notations

in Equation 3 and measure a set of T given different P values,

so that to create linear equations regarding d
diff
i . We solve the

equations and retrieve the delay difference (d0i − d1i) for each

PUF segment.

B. Delay Information Exchange

Bob and Alice exchange the retrieved delay difference

information in the second step. This process is only one-time

and can be done through standard cryptography. Based on

the exchanged characterization information, Alice and Bob

need to define a PUF matching template, which is used as

the target PUF that PUF A and PUF B are matched to. Note

that the template PUF has no physical entity; it is purely a

conceptual function. To facilitate the demonstration, we denote

the delay difference of each segment in PUF A, PUF B,

and the template PUF in Equation 4. There are multiple ways

to define the delay properties of the template PUF, we have

defined it as shown in Equation 5 to reduce the number of

segments need to be built using PDL.

PUF A = {d1A, d
2
A, ...d

n
A}

PUF B = {d1B , d
2
B , ...d

n
B}

PUF Template = {d1T , d
2
T , ...d

n
T }

(4)

diT = max(diA, diB), i ∈ {1, 2, ...n} (5)

C. Appending PDL Segments

This goal of this step is to modify PUF A and PUF B to

the template PUF using PDL. Following the characterization

of the template PUF in Equation 5, two situations may happen

during the matching process. Take the matching of PUF A as

an example:

(1)diA < diT . An extra segment with delay difference |diT −
diA| needs to be added to PUF A. This segment together with

the ith segment in PUF A equivalent to the ith segment in the

template PUF.

(2)diA = diT . In this situation, nothing needs to done to

modify the ith segment in PUF A.

We build the extra delay segments using PDL. In each

segment, one LUT with selection bit combination Cupper is

used as the upper delay and the other LUT with selection

bit combination Clower is used as the lower delay. Due to

the delay bias caused by the asymmetric internal structure

of LUTs, different input combinations to LUTs will generate

distinct delays. Therefore, by properly assigning Cupper and

Clower, target delay difference (|diT − diA|) can be created.

In some cases, |diT − diA| is larger than the maximum delay

difference that can be generated using Cupper and Clower, then

multiple LUTs can be applied as the upper delay/lower delay

to boost the delay difference proportionally.

dA
1 dA

2

dB
1 dB

2

PDL
dA

n+1

PDL

dA
n+2dA

n

PDL

dB
n+1

PDL

dB
n+2dB

n

cA
1

cA
2

cA
n

cA
n+1

cA
n+2

cA
n+j

cB
1

cB
2

cB
n

cB
n+1

cB
n+2

cB
n+k

PDL

dA
n+j

PDL

dB
n+k

PUF A:

PUF B:

dT
1

dT
2

dT
n

cT
1

cT
2

cT
n

Template

PUF:

Fig. 5: Structures of PUF A and PUF B after matching using

PDL.

D. Challenge Reassignment

After the previous steps, both PUF A and PUF B now

are matched to the template PUF, thus are expected to have

the same challenge-response mapping function. The structures

of matched PUF A and PUF B as shown in Figure 5 have

more than n segments. Assume that PUF A has j additional

segments and PUF B has k additional segments implemented

using PDL. Then k + j should equal to n according to

our template defined above. Now consider a random n-bit

challenge CT is fed to the template PUF to generate a response

R. The key question is how to adjust the (n+ j)-bit challenge

CA to be fed to PUF A and the (n+ k)-bit challenge CB to

be fed to PUF B to generate the same response R.

Our challenge reassignment algorithm works in the fol-

lowing way. We take PUF A as an example. We start with

the rightmost segmental delay difference d
n+j
A , and check

the corresponding segmental delay difference diT that d
n+j
A

is matched to in the template PUF. The segmental delay

difference diT , which equals to diB in PUF B should be the sum

of d
n+j
A and diA based on the matching policy. Then according

to the challenge CT , we check whether the segmental delay

difference diT contributes to the upper path or the lower path

before the arbiter. Based on the observed path P in the

template PUF, we assign the (n + j)th challenge bit C
n+j
A

in CA in such a way that d
n+j
A also contributes to the same

path P in PUF A. The above process is repeated with the

(n + j − 1)th segment, and continues all the way to the first

segment in PUF A. Consequently, each time when we assign

a challenge bit to PUF A, all the challenge bits after have

been assigned already, making it deterministic which value to

assign to that challenge bit in order to be consistent with the

corresponding segment in the template PUF. With the above

process, for any random challenge to the template PUF, we

can find a matched challenge to PUF A and another challenge

to PUF B to make them all generate the same response.

E. Discussion

The above PUF matching flow can be easily extended to

the multi-party PUF matching. As long as all the parties

are synchronized with the template PUF, they can always

add new PDL segments and follow the same algorithm to

reassign challenges for matching. This provides the potential

for message encryption/decryption between multiple parties.

The above matching process maintains the properties of

standard PUFs. On one hand, the extra area and delay overhead

are reasonably small. In the case of matching two PUFs,

the newly generated PUFs have more segments comparing

to the original PUFs, but the total number of additional

segments merely equals to n, which is the length of an original

PUF. On the other hand, the generated matched PUFs remain

unclonable. Although an attacker can reproduce the PDL

segments by applying the same selection bits to the LUTs,

the attacker is unable to duplicate the segments of the original

PUF because of process variation. This explains the reason that

we can not directly use PDL to build new PUFs, otherwise the

unclonability of the function will be compromised.

VI. SECURITY PROTOCOLS

Various security protocols are enabled using our PUF

matching platform. We choose three typical protocols to

demonstrate in this section, multi-party message communica-

tion, pairwise encryption/decryption, and authentication.

A. Multi-party Message Communication

The protocol of multi-party message communication as-

sumes that N trusted parties want to exchange information

mutually (N ≥ 2). The message exchange should be acted

in such a way that when a message is sent, all the other

N − 1 parties are able to retrieve the message, but untrusted

parties are incapable of doing so. Protocol 1 shows the flow

of the multi-party message communication. In the protocol,

we assume that party i wants to transfer message m to all the

other trusted parties. The protocol is designed based on the

fact that after the PUF matching, each and only each trusted

party owns a matched PUF with the same mapping function

E. The whole process employs low timing overhead in the

sense that it only takes one time PUF calculation (one clock

cycle) for all the parties.

Protocol 1 Multi-party Message Communication

1: Party 1 to party N match their PUFs.

2: Party i generates a random challenge c.

3: Party i calculates R = E(c)⊕m, where E is the function

of the matched PUF, and m is the message to transfer.

4: Party i broadcasts R and c.

5: All the other parties with the match PUF calculate m =
E(c)⊕R.

B. Pairwise Encryption and Decryption

An alternative form of multi-party communication is to only

allow pairwise communication which means that when party

A encrypts a message and sends to party B, only party B

can decrypt the message and all the rest parties can not. Our

PUF matching platform can also be applied in this scenario.

Traditionally, if party A needs to talk to N parties exclusively

using PUFs, he/she needs N separate PUFs. However, using

our PUF matching, only a single PUF is required for party

A since PDL can be easily reconfigured to match to different

parties. Therefore, by simply adding reconfigurable PDL, the

required number of PUFs used for communication is reduced

exponentially. The detailed encryption and decryption scheme

is the same as the multi-party message communication with

the only modification that the PUF matching in this protocol

is merely between two parties.

C. Authentication

Authentication, as another commonly used protocol, can

also be easily realized with the matched PUF platform. The

key idea is to use matched PUFs to calculate the response of

a random challenge and expect only the authorized parties to

provide the correct responses. The whole process is also low

overhead since each trusted party only needs one clock cycle

computation.

Protocol 2 Authentication

1: Party 1 to party N match their PUFs.

2: Party i generates a random challenge c.

3: Party i calculates R = E(c) and broadcasts c.

4: All the other parties with the match PUF calculate R′ =
E(c) and send R′ to party i.

5: Party i compares R to R′. If and only if R = R′, party i

authenticates the party.

VII. IMPLEMENTATION

We demonstrate our implementation and evaluation of PDL

as well as PDL-based PUF matching mechanism in this

section. All implementations and measurements are done on

Spartan-6 XC6SLX45 FPGAs.

A. Delay Measurement Setup

In order to measure and verify the delay of PDL on the

FPGA we use the circuit describe by Majzoobi et al [12]. The

delay characterization circuit is shown in Figure 6. The entire

measurement system is constructed by three parts: circuit

under test (CUT), flip-flops and external modules.

1) Circuit Under Test: Our goal is to measure the delay

difference of an LUT-based PDL when providing different

input vectors. However, such delay is too small to measure

individually, thus a chain of LUTs is used as our target CUT.

We use on-board LUT6 to build our CUT and each LUT in

the chain implements an inverter. To be specific, only the most

significant selection bit fed to the LUT is inverted and the

remaining 5 bits are used as configuration bits to configure the

Fig. 6: Delay characterization circuit.

internal signal routing path inside the LUT. The configuration

bits are identical for every LUT in the CUT so that we are

able to estimate individual delay by calculating CUT delay

over the number of LUTs. We measure the delays of CUT that

consists of 10 LUTs when providing all possible configuration

bits from “00000” to “11111”.
2) Flip-flops: There are three D flip-flops used in the delay

characterization circuit: launch flip-flop, sample flip-flop and

capture flip-flop. All three flip-flops share the same clock

signal generated by a sweeping frequency function generator.

The launch flip-flop generates a low-to-high signal through the

CUT at the rising edge of the clock. Then the signal arrives at

the sample flip-flop. If the signal arrives before the sampling

action takes place (at the rising edge of the clock) then the

correct signal value is successfully sampled, otherwise the

sampled value would be different indicating a timing error.

Such a mismatch can be detected by a simple XOR gate. If

the sampled value and the correct signal value are the same,

the XOR gate would produce a 0 indicating no timing violation

occurred. Otherwise, the capture flip-flop will receive a 1 from

the XOR gate indicating a timing error.
3) External Modules: There are two external modules used

in the delay measurement process. A sweeping frequency

function generator is used to generate a square wave from

2MHz to 100MHz. We then shift the frequency up by 32 times

using the phased lock loop (PLL) on the FPGA. For each

frequency, the generator produces a fixed number of 10,000

pulses which are used to drive the flip-flops. A timing error

catcher module takes the output of the capture flip-flop and the

clock signal as inputs and calculates the probability of a timing

error occurrence. By monitoring the timing error probability,

the CUT delay can be inferred at pico-second resolution.

B. Delay Measurement Results

We have measured the average delay for our CUT under

25 ◦C operating temperature and then calculate the individual

LUT delay. The results are shown in Figure 7. Figure 7(a)

shows the delay difference between any pair of configuration

bits. Figure 7(b) shows absolute value of delay difference

between any pair of configuration bits and Figure 7(c) demon-

strates hamming distance heatmap between each pair.
The largest difference is 11 ps, which occurs between 00000

and 11111. This case is found at location (x,y) = (0,31) and

location (31,0) in Figure 7(a) and 7(b). The diagonal line from

lower left corner to upper right corner is all 0s because we

are comparing each configuration bits to themselves.
When we compare Figure 7(b) with Figure 7(c), we notice

that some patterns shown in Figure 7(b) can be observed

in Figure 7(c). In many cases, if two configuration vectors

have large delay difference in PDL, these two vectors also

have large hamming distance. We believe this is a valid

observation because large hamming distance indicates that the

corresponding internal signal paths share very few common

routes, consequently it is more likely to generate higher

delay difference. However, note that sharing few common

routes does not always indicate large delay difference. Two

very distinct signal paths might as well produce small delay

difference. Thus, we also see many patterns in hamming

difference heatmap are not observable in Figure 7(b).

C. Process Variation

Process variation is not avoidable when we measure delays

at pico-second resolution. We have run experiments on 3

difference FPGA boards as well as different locations on each

board to test the effect of process variation. We have measured

the delays of PDL on 5 different locations on each board when

providing 00000 and 11111 as configuration bits. The average

delays of PDL on three boards are compared and presented

in Table I. The results indicate that the delay difference is

relatively stable when providing the same pair of configuration

bits on different boards.

00000 (ns) 11111 (ns) Difference (ns)
FPGA 1 1.253 1.265 0.012
FPGA 2 1.248 1.259 0.011
FPGA 3 1.257 1.267 0.010

TABLE I: Delay measurement results on three different FP-

GAs.

Based on our measurement, we believe it is safe to assume

that the time difference between different routes within a PDL

is larger than the difference caused by the effect of process

variation.

VIII. RESULTS

We implement our PDL-based PUF matching platform on

Spartan-6 XC6SLX45 FPGAs. We first test the matching

accuracy of our matching scheme. We then examine the system

overhead to prove that our design is lightweight.

A. Matching Accuracy

When applying the same challenge vector to a pair of

matched PUFs, the probability that the two PUFs generate

the same response is defined as matching accuracy.

We followed our proposed matching scheme to implement

and match two 64-bit PUFs. We have generated 1,000,000

random challenges and applied them to the two PUFs. The

test is repeated 10 times and the average matching accuracy

reaches 98.64%. We believe the high matching accuracy

proves that our design is not only efficient but also stable.

B. System Overhead

We measure the delay, area and energy consumption for

PDL-based PUF matching platform and show the results in

Table II. Note that we have measured the average overhead of

(a) (b) (c)

Fig. 7: (a) Delay difference between any pair of configuration bits. Delay difference unit: (ps). (b) Absolute value of delay

difference between any pair of configuration bits. Delay difference unit: (ps). (c)Hamming distance between all pairs of

configuration bits.

a single party in our matching scheme. We further compare

our design with several popular low energy block ciphers as

shown in Table III. The comparison indicates that our design

is comparable regarding the size of the design while is the

most competitive in terms of energy consumption (due to small

delay overhead).

Type Overhead
LUTs 196
Slices 145
Max Delay (ns) 116.712
Energy (µJ) 9.54×10−4

TABLE II: Overhead of PDL-based matched PUF.

Type Energy(µJ) LUTs

TinyXTEA-3 [16] 5.45×10−3 364
Present [16] 3.16×10−3 159
HIGHTs [16] 1.07×10−3 132
Matched PUF using PDL 9.54×10−4 196

TABLE III: Energy consumption comparison.

C. Security Test

As a security primitive, the output randomness is an im-

portant criteria to evaluate the security property. We quantify

the statistical randomness of the matched PUF outputs by

applying the industry-standard statistical test suite of the

National Institute of Standards and Technology (NIST) [23].

We generate a stream of outputs in the following way: a

random seed is used as the primary inputs to the matched

PUF after configuration and the corresponding outputs are

generated. In each subsequent clock cycle, the outputs are first

shuffled and then XORed with the previous inputs to generate

the inputs for the next clock cycle. We repeat the process until

we have collected enough outputs required by the benchmark

suite. For each test, we use 1000 instances of matched PUFs,

the results in Table IV show the average passing ratio of each

subtest over all the instances.

Statistical Test Success Ratio
Frequency 100%

Block Frequency (m=128) 97.6%

Cusum-Forward 98.1%

Cusum-Reverse 98.3%

Runs 98.5%

Longest Runs of Ones 96.5%

Rank 98.2%

Spectral DFT 95.6%

Non-overlapping Templates (m = 9) 95.9%

Universal 100%

Approximate Entropy (m = 8) 96.5%

Rand. Excursions (x = 1) 98.2%

Rand. Excursions Variant (x = −1) 97.6%

Serial (m = 16) 98.7%

Linear Complexity (M = 500) 97.8%

TABLE IV: The average success ratio for the NIST statistical

test suite. 1000 bitstreams of 10000 bits are passed to each

test. The test passes for p-value≥ σ, where σ is 0.01.

IX. CONCLUSION

In this paper, we have proposed an ultra-low energy PUF

matching scheme by using PDL. Our core idea is to modify

the delay difference of arbiter PUF segments in such a way

that multiple PUFs have the same challenge-response mapping

function. On the top of our PUF matching platform, a variety

of low overhead security protocols between multiple parties

are enabled. Furthermore, we have implemented our design on

the Spartan-6 FPGA platform. The experiment results indicate

that our design allows the PUFs to be matched with high

accuracy while requiring ultra low overhead.

X. ACKNOWLEDGMENT

This work was supported in part by the NSF under Award

CNS-0958369, and Award CNS-1059435.

REFERENCES

[1] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance
CMOS variability in the 65-nm regime and beyond,” IBM journal of

research and development, vol. 50, no. 4.5, pp. 433–449, 2006.

[2] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[3] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on

Computer and communications security, pp. 148–160, ACM, 2002.
[4] G. E. Suh and S. Devadas, “Physical unclonable functions for device

authentication and secret key generation,” in Proceedings of the 44th

annual Design Automation Conference, pp. 9–14, ACM, 2007.
[5] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA intrinsic

PUFs and their use for IP protection. Springer, 2007.
[6] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The

butterfly PUF protecting IP on every FPGA,” in Hardware-Oriented

Security and Trust, 2008. HOST 2008. IEEE International Workshop

on, pp. 67–70, IEEE, 2008.
[7] T. Xu and M. Potkonjak, “Digital puf using intentional faults,” in Quality

Electronic Design (ISQED), 2015 16th International Symposium on,
pp. 448–451, IEEE, 2015.

[8] T. Xu, J. B. Wendt, and M. Potkonjak, “Secure remote sensing and com-
munication using digital pufs,” in Proceedings of the tenth ACM/IEEE

symposium on Architectures for networking and communications sys-

tems, pp. 173–184, ACM, 2014.
[9] L. Bolotnyy and G. Robins, “Physically unclonable function-based

security and privacy in RFID systems,” in Pervasive Computing and

Communications, 2007. PerCom’07. Fifth Annual IEEE International

Conference on, pp. 211–220, IEEE, 2007.
[10] U. Rührmair, “Simpl systems: On a public key variant of physical

unclonable functions.,” IACR Cryptology ePrint Archive, vol. 2009,
p. 255, 2009.

[11] T. Hui and R. W. Mounger, “Programmable delay line,” Aug. 3 1999.
US Patent 5,933,039.

[12] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using pro-
grammable delay lines,” in Information Forensics and Security (WIFS),

2010 IEEE International Workshop on, pp. 1–6, IEEE, 2010.
[13] A. Raychowdhury, S. Ghosh, and K. Roy, “A novel on-chip delay

measurement hardware for efficient speed-binning,” in On-Line Testing

Symposium, 2005. IOLTS 2005. 11th IEEE International, pp. 287–292,
IEEE, 2005.

[14] M.-C. Tsai, C.-H. Cheng, and C.-M. Yang, “An all-digital high-precision
built-in delay time measurement circuit,” in VLSI Test Symposium, 2008.

VTS 2008. 26th IEEE, pp. 249–254, IEEE, 2008.
[15] M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar, “Rapid FPGA

characterization using clock synthesis and signal sparsity,” in Interna-

tional Test Conference (ITC), pp. 1–10, 2010.
[16] P. Yalla and J.-P. Kaps, “Lightweight cryptography for FPGAs,” in Re-

configurable Computing and FPGAs, 2009. ReConFig’09. International

Conference on, pp. 225–230, IEEE, 2009.
[17] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure

pufs,” in Proceedings of the 2008 IEEE/ACM International Conference

on Computer-Aided Design, pp. 670–673, IEEE Press, 2008.
[18] S. Meguerdichian and M. Potkonjak, “Matched public PUF: ultra

low energy security platform,” in Proceedings of the 17th IEEE/ACM

international symposium on Low-power electronics and design, pp. 45–
50, IEEE Press, 2011.

[19] T. Xu and M. Potkonjak, “The digital bidirectional function as a
hardware security primitive: Architecture and applications,” in Low

Power Electronics and Design (ISLPED), 2015 IEEE/ACM International

Symposium on, pp. 335–340, IEEE, 2015.
[20] T. Xu, H. Gu, and M. Potkonjak, “Data protection using recursive inverse

function,” in Field Programmable Logic and Applications (FPL), 2015

25th International Conference on, pp. 1–4, IEEE, 2015.
[21] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-

ber, “Modeling attacks on physical unclonable functions,” in Proceed-

ings of the 17th ACM conference on Computer and communications

security, pp. 237–249, ACM, 2010.
[22] T. Xu, D. Li, and M. Potkonjak, “Adaptive characterization and emula-

tion of delay-based physical unclonable functions using statistical mod-
els,” in Proceedings of the 52nd Annual Design Automation Conference,
pp. 76–81, ACM, 2015.

[23] J. Soto, “Statistical testing of random number generators,” in Proceed-

ings of the 22nd National Information Systems Security Conference,
vol. 10, p. 12, NIST Gaithersburg, MD, 1999.

